Performance optimization of low-temperature geothermal organic Rankine cycles using axial turbine isentropic efficiency correlation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-02

AUTHORS

Chao Zhang, Jinglun Fu, Jun Kang, Wencheng Fu

ABSTRACT

Present study deals with parametric optimization and performance evaluation of an air-cooled organic Rankine system for the low-temperature geothermal source, especially considering the effects of turbine isentropic efficiency. Turbine isentropic efficiency is predicted with turbine size parameter and volume ratio, using the well-known correlation for single-stage axial turbine. Optimal performances with the objective of maximizing system exergy efficiency are compared with the common used working fluid R245fa and two environmental friendly working fluids R1234ze(E) and R1234ze(Z). Highest turbine isentropic efficiency is achieved for working fluid R1234ze(Z). The optimal turbine inlet vapor is overheating for Working fluid R1234ze(E) with the limitation of allowable minimum geothermal brine reinjection temperature. Due to the influence of turbine isentropic efficiency, optimal system exergy efficiency for working fluid R1234ze(E) is 0.4576 for the 100 kg/s geothermal source, which is slightly higher than the value of 0.4487 for the 10 kg/s geothermal source. More... »

PAGES

61

References to SciGraph publications

  • 2017-04. Property-based selection criteria of low GWP working fluids for organic Rankine cycle in JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING
  • 2017-01. On the technical and economic feasibility of a solar thermodynamic power plant in an area of medium–high direct sunlight intensity: an actual case study in JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40430-018-0996-9

    DOI

    http://dx.doi.org/10.1007/s40430-018-0996-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100557606


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Tianjin University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.265025.6", 
              "name": [
                "Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin, China", 
                "National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), Tianjin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Chao", 
            "id": "sg:person.015146053460.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015146053460.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Engineering Thermophysics", 
              "id": "https://www.grid.ac/institutes/grid.458465.e", 
              "name": [
                "Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fu", 
            "givenName": "Jinglun", 
            "id": "sg:person.016541014460.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016541014460.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "School of Electrical and Electronic Engineering, University of Tianjin Technology, Tianjin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kang", 
            "givenName": "Jun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tianjin University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.265025.6", 
              "name": [
                "Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin, China", 
                "National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), Tianjin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fu", 
            "givenName": "Wencheng", 
            "id": "sg:person.010413142577.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010413142577.78"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.energy.2015.09.035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004503913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.energy.2015.09.035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004503913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.energy.2015.09.035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004503913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.energy.2015.09.035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004503913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2011.02.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007725814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rser.2013.03.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008120580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2016.01.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012703018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2015.07.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017249908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.energy.2014.09.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018780292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.renene.2010.09.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018843665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.energy.2013.11.056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021496984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.geothermics.2016.04.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024037276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.applthermaleng.2012.10.042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026385685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40430-016-0620-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026704532", 
              "https://doi.org/10.1007/s40430-016-0620-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40430-016-0620-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026704532", 
              "https://doi.org/10.1007/s40430-016-0620-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40430-016-0605-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029498122", 
              "https://doi.org/10.1007/s40430-016-0605-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40430-016-0605-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029498122", 
              "https://doi.org/10.1007/s40430-016-0605-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.energy.2014.11.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031358109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.energy.2011.08.035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035179208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.energy.2016.02.128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036074019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.desal.2006.12.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039269164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enconman.2014.08.058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042896699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.energy.2016.04.063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045421337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.energy.2016.05.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050345994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.energy.2014.07.038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053599361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.3230794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062108770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1243/09576509jpe372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064455955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1243/09576509jpe372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064455955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.energy.2017.01.151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083528133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.energy.2017.02.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083693372"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-02", 
        "datePublishedReg": "2018-02-01", 
        "description": "Present study deals with parametric optimization and performance evaluation of an air-cooled organic Rankine system for the low-temperature geothermal source, especially considering the effects of turbine isentropic efficiency. Turbine isentropic efficiency is predicted with turbine size parameter and volume ratio, using the well-known correlation for single-stage axial turbine. Optimal performances with the objective of maximizing system exergy efficiency are compared with the common used working fluid R245fa and two environmental friendly working fluids R1234ze(E) and R1234ze(Z). Highest turbine isentropic efficiency is achieved for working fluid R1234ze(Z). The optimal turbine inlet vapor is overheating for Working fluid R1234ze(E) with the limitation of allowable minimum geothermal brine reinjection temperature. Due to the influence of turbine isentropic efficiency, optimal system exergy efficiency for working fluid R1234ze(E) is 0.4576 for the 100 kg/s geothermal source, which is slightly higher than the value of 0.4487 for the 10 kg/s geothermal source.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s40430-018-0996-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136734", 
            "issn": [
              "1678-5878", 
              "1806-3691"
            ], 
            "name": "Journal of the Brazilian Society of Mechanical Sciences and Engineering", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "40"
          }
        ], 
        "name": "Performance optimization of low-temperature geothermal organic Rankine cycles using axial turbine isentropic efficiency correlation", 
        "pagination": "61", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4bdb6f1387b8146fd6063366f384793cc259e914c9e5801bd40ad8126318279a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40430-018-0996-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100557606"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40430-018-0996-9", 
          "https://app.dimensions.ai/details/publication/pub.1100557606"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T23:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000484.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s40430-018-0996-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40430-018-0996-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40430-018-0996-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40430-018-0996-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40430-018-0996-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    161 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40430-018-0996-9 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author Nd44da6955ccb41debb0985d8da6cded4
    4 schema:citation sg:pub.10.1007/s40430-016-0605-8
    5 sg:pub.10.1007/s40430-016-0620-9
    6 https://doi.org/10.1016/j.apenergy.2011.02.034
    7 https://doi.org/10.1016/j.apenergy.2015.07.005
    8 https://doi.org/10.1016/j.apenergy.2016.01.020
    9 https://doi.org/10.1016/j.applthermaleng.2012.10.042
    10 https://doi.org/10.1016/j.desal.2006.12.011
    11 https://doi.org/10.1016/j.enconman.2014.08.058
    12 https://doi.org/10.1016/j.energy.2011.08.035
    13 https://doi.org/10.1016/j.energy.2013.11.056
    14 https://doi.org/10.1016/j.energy.2014.07.038
    15 https://doi.org/10.1016/j.energy.2014.09.029
    16 https://doi.org/10.1016/j.energy.2014.11.048
    17 https://doi.org/10.1016/j.energy.2015.09.035
    18 https://doi.org/10.1016/j.energy.2016.02.128
    19 https://doi.org/10.1016/j.energy.2016.04.063
    20 https://doi.org/10.1016/j.energy.2016.05.021
    21 https://doi.org/10.1016/j.energy.2017.01.151
    22 https://doi.org/10.1016/j.energy.2017.02.024
    23 https://doi.org/10.1016/j.geothermics.2016.04.002
    24 https://doi.org/10.1016/j.renene.2010.09.022
    25 https://doi.org/10.1016/j.rser.2013.03.040
    26 https://doi.org/10.1115/1.3230794
    27 https://doi.org/10.1243/09576509jpe372
    28 schema:datePublished 2018-02
    29 schema:datePublishedReg 2018-02-01
    30 schema:description Present study deals with parametric optimization and performance evaluation of an air-cooled organic Rankine system for the low-temperature geothermal source, especially considering the effects of turbine isentropic efficiency. Turbine isentropic efficiency is predicted with turbine size parameter and volume ratio, using the well-known correlation for single-stage axial turbine. Optimal performances with the objective of maximizing system exergy efficiency are compared with the common used working fluid R245fa and two environmental friendly working fluids R1234ze(E) and R1234ze(Z). Highest turbine isentropic efficiency is achieved for working fluid R1234ze(Z). The optimal turbine inlet vapor is overheating for Working fluid R1234ze(E) with the limitation of allowable minimum geothermal brine reinjection temperature. Due to the influence of turbine isentropic efficiency, optimal system exergy efficiency for working fluid R1234ze(E) is 0.4576 for the 100 kg/s geothermal source, which is slightly higher than the value of 0.4487 for the 10 kg/s geothermal source.
    31 schema:genre research_article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree false
    34 schema:isPartOf N7ed7d6de705d4ab985d4c89598527ef7
    35 Nb9b4332116c643f79d0f6420f00288b3
    36 sg:journal.1136734
    37 schema:name Performance optimization of low-temperature geothermal organic Rankine cycles using axial turbine isentropic efficiency correlation
    38 schema:pagination 61
    39 schema:productId N0587d749fadf416caccf4419948f77ea
    40 N6967f542e9ce420e90293ed2f230eccc
    41 Ndc591bba14e240e7939d1164ba6459b5
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100557606
    43 https://doi.org/10.1007/s40430-018-0996-9
    44 schema:sdDatePublished 2019-04-10T23:18
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher N7e9baf9687544836b7bed0f120398956
    47 schema:url http://link.springer.com/10.1007/s40430-018-0996-9
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N0587d749fadf416caccf4419948f77ea schema:name dimensions_id
    52 schema:value pub.1100557606
    53 rdf:type schema:PropertyValue
    54 N28c42f23fc554295a77edce9a80e9143 rdf:first N4162fba570474f66825b6c222ccae1cd
    55 rdf:rest N87044bac69f24683b7a4996c8b18e95d
    56 N4162fba570474f66825b6c222ccae1cd schema:affiliation N6c1c58e38d0640f0949361893246b3a8
    57 schema:familyName Kang
    58 schema:givenName Jun
    59 rdf:type schema:Person
    60 N6967f542e9ce420e90293ed2f230eccc schema:name readcube_id
    61 schema:value 4bdb6f1387b8146fd6063366f384793cc259e914c9e5801bd40ad8126318279a
    62 rdf:type schema:PropertyValue
    63 N6c1c58e38d0640f0949361893246b3a8 schema:name School of Electrical and Electronic Engineering, University of Tianjin Technology, Tianjin, China
    64 rdf:type schema:Organization
    65 N7e9baf9687544836b7bed0f120398956 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 N7ed7d6de705d4ab985d4c89598527ef7 schema:issueNumber 2
    68 rdf:type schema:PublicationIssue
    69 N87044bac69f24683b7a4996c8b18e95d rdf:first sg:person.010413142577.78
    70 rdf:rest rdf:nil
    71 Na086da3d0d334fde9aa8c4d7507db16e rdf:first sg:person.016541014460.22
    72 rdf:rest N28c42f23fc554295a77edce9a80e9143
    73 Nb9b4332116c643f79d0f6420f00288b3 schema:volumeNumber 40
    74 rdf:type schema:PublicationVolume
    75 Nd44da6955ccb41debb0985d8da6cded4 rdf:first sg:person.015146053460.93
    76 rdf:rest Na086da3d0d334fde9aa8c4d7507db16e
    77 Ndc591bba14e240e7939d1164ba6459b5 schema:name doi
    78 schema:value 10.1007/s40430-018-0996-9
    79 rdf:type schema:PropertyValue
    80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Engineering
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Interdisciplinary Engineering
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1136734 schema:issn 1678-5878
    87 1806-3691
    88 schema:name Journal of the Brazilian Society of Mechanical Sciences and Engineering
    89 rdf:type schema:Periodical
    90 sg:person.010413142577.78 schema:affiliation https://www.grid.ac/institutes/grid.265025.6
    91 schema:familyName Fu
    92 schema:givenName Wencheng
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010413142577.78
    94 rdf:type schema:Person
    95 sg:person.015146053460.93 schema:affiliation https://www.grid.ac/institutes/grid.265025.6
    96 schema:familyName Zhang
    97 schema:givenName Chao
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015146053460.93
    99 rdf:type schema:Person
    100 sg:person.016541014460.22 schema:affiliation https://www.grid.ac/institutes/grid.458465.e
    101 schema:familyName Fu
    102 schema:givenName Jinglun
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016541014460.22
    104 rdf:type schema:Person
    105 sg:pub.10.1007/s40430-016-0605-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029498122
    106 https://doi.org/10.1007/s40430-016-0605-8
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/s40430-016-0620-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026704532
    109 https://doi.org/10.1007/s40430-016-0620-9
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.apenergy.2011.02.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007725814
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/j.apenergy.2015.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017249908
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.apenergy.2016.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012703018
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/j.applthermaleng.2012.10.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026385685
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/j.desal.2006.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039269164
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/j.enconman.2014.08.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042896699
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/j.energy.2011.08.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035179208
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/j.energy.2013.11.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021496984
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/j.energy.2014.07.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053599361
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.energy.2014.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018780292
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.energy.2014.11.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031358109
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.energy.2015.09.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004503913
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.energy.2016.02.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036074019
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.energy.2016.04.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045421337
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.energy.2016.05.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050345994
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.energy.2017.01.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083528133
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.energy.2017.02.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083693372
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.geothermics.2016.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024037276
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.renene.2010.09.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018843665
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.rser.2013.03.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008120580
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1115/1.3230794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062108770
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1243/09576509jpe372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064455955
    154 rdf:type schema:CreativeWork
    155 https://www.grid.ac/institutes/grid.265025.6 schema:alternateName Tianjin University of Technology
    156 schema:name National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), Tianjin, China
    157 Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin, China
    158 rdf:type schema:Organization
    159 https://www.grid.ac/institutes/grid.458465.e schema:alternateName Institute of Engineering Thermophysics
    160 schema:name Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China
    161 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...