Genotype Imputation Methods and Their Effects on Genomic Predictions in Cattle View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Yining Wang, Guohui Lin, Changxi Li, Paul Stothard

ABSTRACT

In this study, we reviewed six imputation methods (Impute 2, FImpute 2.2, Beagle 4.1, Beagle 3.3.2, MaCH, and Bimbam) and evaluated the accuracy of imputation from simulated 6K bovine SNPs to 50K SNPs with 1800 beef cattle from two purebred and four crossbred populations and the impact of imputed genotypes on performance of genomic predictions for residual feed intake (RFI) in beef cattle. Accuracy of imputation was reported in both concordance rate (CR) and allelic r2 and assessed via fivefold cross-validations. Running times of different methods were compared. Impute 2, FImpute and Beagle 4.1 yielded the most accurate imputation results (with CR > 91%). FImpute was the fastest and had advantages over all other methods in imputing rare variants. Minor allele frequency (MAF) and genetic relatedness between individuals in reference and validation populations can affect accuracy of imputation. For all methods, imputation accuracy for genotypes carrying the minor allele increases as the MAF increases. Impute 2 outperformed all other methods on MAF > 5% and onwards. FImpute and Impute 2 that adopted the nearest neighbour scheme coped better with individuals of distant relativeness. Bimbam yielded the poorest CR (76%) due to admixed reference panels. Imputed genotypes and actual 50K/6K genotypes were employed to predict genomic breeding values (GEBVs) of RFI using a Bayesian method and GBLUP. Accuracies of GEBV were similar using actual 50K genotypes or imputed genotypes, except those from Bimbam, and the imputation errors had minimal impact on the genomic predictions. More... »

PAGES

79-98

References to SciGraph publications

  • 2012-08. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing in NATURE GENETICS
  • 2008-12. Missing data imputation and haplotype phase inference for genome-wide association studies in HUMAN GENETICS
  • 2014-12. A new approach for efficient genotype imputation using information from relatives in BMC GENOMICS
  • 2005-10. A haplotype map of the human genome in NATURE
  • 2014-01. Toward genomic prediction from whole-genome sequence data: impact of sequencing design on genotype imputation and accuracy of predictions in HEREDITY
  • 2016-12. Contributions of linkage disequilibrium and co-segregation information to the accuracy of genomic prediction in GENETICS SELECTION EVOLUTION
  • 2015-12. Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data in GENETICS SELECTION EVOLUTION
  • 2007-07. A new multipoint method for genome-wide association studies by imputation of genotypes in NATURE GENETICS
  • 2013-12. Enlarging a training set for genomic selection by imputation of un-genotyped animals in populations of varying genetic architecture in GENETICS SELECTION EVOLUTION
  • 2012-02. A linear complexity phasing method for thousands of genomes in NATURE METHODS
  • 2015-12. Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix in GENETICS SELECTION EVOLUTION
  • 2014-12. Accuracy of imputation to whole-genome sequence data in Holstein Friesian cattle in GENETICS SELECTION EVOLUTION
  • 2014-12. QTLs associated with dry matter intake, metabolic mid-test weight, growth and feed efficiency have little overlap across 4 beef cattle studies in BMC GENOMICS
  • 2009-04. SNP imputation in association studies in NATURE BIOTECHNOLOGY
  • 2010-07. Genotype imputation for genome-wide association studies in NATURE REVIEWS GENETICS
  • 2013-12. High-density marker imputation accuracy in sixteen French cattle breeds in GENETICS SELECTION EVOLUTION
  • 2014-12. Consequences of splitting whole-genome sequencing effort over multiple breeds on imputation accuracy in BMC GENETICS
  • 2010-06. Uncovering the roles of rare variants in common disease through whole-genome sequencing in NATURE REVIEWS GENETICS
  • 2012-12. A phasing and imputation method for pedigreed populations that results in a single-stage genomic evaluation in GENETICS SELECTION EVOLUTION
  • 2014-12. Accuracy of genome-wide imputation in Braford and Hereford beef cattle in BMC GENETICS
  • 2011-12. Different models of genetic variation and their effect on genomic evaluation in GENETICS SELECTION EVOLUTION
  • 2015-12. Strategies for genotype imputation in composite beef cattle in BMC GENETICS
  • 2014-08. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle in NATURE GENETICS
  • 2012-12. Assessment of alternative genotyping strategies to maximize imputation accuracy at minimal cost in GENETICS SELECTION EVOLUTION
  • 2005-05. A genome-wide scalable SNP genotyping assay using microarray technology in NATURE GENETICS
  • 2015-12. Genomic prediction using imputed whole-genome sequence data in Holstein Friesian cattle in GENETICS SELECTION EVOLUTION
  • 2008-09. Detection of sharing by descent, long-range phasing and haplotype imputation in NATURE GENETICS
  • 2007-12. Methods to impute missing genotypes for population data in HUMAN GENETICS
  • 2012-12. Strategies and utility of imputed SNP genotypes for genomic analysis in dairy cattle in BMC GENOMICS
  • 2011-10. Haplotype phasing: existing methods and new developments in NATURE REVIEWS GENETICS
  • 2002-08. An indirect approach to the extensive calculation of relationship coefficients in GENETICS SELECTION EVOLUTION
  • 2006-01. Whole-genome genotyping with the single-base extension assay in NATURE METHODS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40362-017-0041-x

    DOI

    http://dx.doi.org/10.1007/s40362-017-0041-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1083881925


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Alberta", 
              "id": "https://www.grid.ac/institutes/grid.17089.37", 
              "name": [
                "Department of Computing Science, University of Alberta, Edmonton, AB, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Yining", 
            "id": "sg:person.0751662156.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751662156.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Alberta", 
              "id": "https://www.grid.ac/institutes/grid.17089.37", 
              "name": [
                "Department of Computing Science, University of Alberta, Edmonton, AB, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Guohui", 
            "id": "sg:person.01130357621.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130357621.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Agriculture and Agriculture-Food Canada", 
              "id": "https://www.grid.ac/institutes/grid.55614.33", 
              "name": [
                "Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada", 
                "Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C & E Trail, Lacombe, AB, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Changxi", 
            "id": "sg:person.01253271101.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253271101.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Alberta", 
              "id": "https://www.grid.ac/institutes/grid.17089.37", 
              "name": [
                "Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stothard", 
            "givenName": "Paul", 
            "id": "sg:person.01011707421.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011707421.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1297-9686-44-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000892001", 
              "https://doi.org/10.1186/1297-9686-44-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2013-7227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002026544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1785", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002640757", 
              "https://doi.org/10.1038/nmeth.1785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12863-014-0105-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002690657", 
              "https://doi.org/10.1186/s12863-014-0105-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12863-014-0105-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002690657", 
              "https://doi.org/10.1186/s12863-014-0105-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004015204", 
              "https://doi.org/10.1038/nrg3054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0034130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004607744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2009.01.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005049647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-015-0149-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005286567", 
              "https://doi.org/10.1186/s12711-015-0149-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-34-4-409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007619332", 
              "https://doi.org/10.1186/1297-9686-34-4-409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-014-0081-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008715599", 
              "https://doi.org/10.1186/s12711-014-0081-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-014-0081-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008715599", 
              "https://doi.org/10.1186/s12711-014-0081-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2796", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009739594", 
              "https://doi.org/10.1038/nrg2796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2796", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009739594", 
              "https://doi.org/10.1038/nrg2796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fgene.2012.00140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010886788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.21844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012117598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.2013.13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013905892", 
              "https://doi.org/10.1038/hdy.2013.13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.0030114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014364350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-44-25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015954765", 
              "https://doi.org/10.1186/1297-9686-44-25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-43-18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016307699", 
              "https://doi.org/10.1186/1297-9686-43-18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-016-0255-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016751595", 
              "https://doi.org/10.1186/s12711-016-0255-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-016-0255-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016751595", 
              "https://doi.org/10.1186/s12711-016-0255-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017293702", 
              "https://doi.org/10.1038/nature04226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017293702", 
              "https://doi.org/10.1038/nature04226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017293702", 
              "https://doi.org/10.1038/nature04226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.081190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017395594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.081190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017395594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-46-41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019198414", 
              "https://doi.org/10.1186/1297-9686-46-41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0005350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020552743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.113.160697", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022281482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.113.160697", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022281482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0409-349", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022719327", 
              "https://doi.org/10.1038/nbt0409-349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0409-349", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022719327", 
              "https://doi.org/10.1038/nbt0409-349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.109.104935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022734992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.109.104935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022734992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.081398.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023066056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-007-0427-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023972121", 
              "https://doi.org/10.1007/s00439-007-0427-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-007-0427-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023972121", 
              "https://doi.org/10.1007/s00439-007-0427-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-007-0427-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023972121", 
              "https://doi.org/10.1007/s00439-007-0427-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2014-9170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023991441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.113.150029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025094141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.113.150029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025094141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025098925", 
              "https://doi.org/10.1186/1471-2164-15-478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-13-538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025285161", 
              "https://doi.org/10.1186/1471-2164-13-538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028025360", 
              "https://doi.org/10.1038/ng.3034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2008-1514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028885396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2008-1646", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029683381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029723318", 
              "https://doi.org/10.1038/ng.2354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.113.152207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029898878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.113.152207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029898878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2013.02.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030053897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2011-4490", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031750140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031918541", 
              "https://doi.org/10.1038/nmeth842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031918541", 
              "https://doi.org/10.1038/nmeth842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.livsci.2014.05.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034316330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12863-014-0157-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035759994", 
              "https://doi.org/10.1186/s12863-014-0157-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12863-014-0157-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035759994", 
              "https://doi.org/10.1186/s12863-014-0157-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.111.001198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037455212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.111.001198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037455212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1004234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038438273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.110.116855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039215498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.110.116855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039215498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.20533", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039500245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gepi.20533", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039500245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/503876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039624779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-015-0100-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040725212", 
              "https://doi.org/10.1186/s12711-015-0100-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-015-0100-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040725212", 
              "https://doi.org/10.1186/s12711-015-0100-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2011-4628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040730668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-1004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040940319", 
              "https://doi.org/10.1186/1471-2164-15-1004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/10-aoas338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041182716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4141/cjas2011-010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041504732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0101544", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042231987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1000529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043446290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-008-0568-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043727385", 
              "https://doi.org/10.1007/s00439-008-0568-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-008-0568-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043727385", 
              "https://doi.org/10.1007/s00439-008-0568-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-008-0568-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043727385", 
              "https://doi.org/10.1007/s00439-008-0568-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-45-33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044648377", 
              "https://doi.org/10.1186/1297-9686-45-33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.216", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045032711", 
              "https://doi.org/10.1038/ng.216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jbg.12067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046072173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1000279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046453067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046979341", 
              "https://doi.org/10.1038/ng2088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2011-5019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048827920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.145821.112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048835228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1439-0388.2011.00964.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049588480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050284813", 
              "https://doi.org/10.1038/ng1547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050284813", 
              "https://doi.org/10.1038/ng1547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2779", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050625874", 
              "https://doi.org/10.1038/nrg2779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2779", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050625874", 
              "https://doi.org/10.1038/nrg2779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2013-6855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052207350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/521987", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052475645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-45-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053067542", 
              "https://doi.org/10.1186/1297-9686-45-12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2012-5702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053191208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12863-015-0251-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053382980", 
              "https://doi.org/10.1186/s12863-015-0251-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s1751731114001803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053582568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/502802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058783626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/cmb.2005.12.1243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059245323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1026034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062861996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2011.07.0358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069031573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/1997.7571738x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070880019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jam2016-0322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070883992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas.2010-3361", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070887577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas.2013-5715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070888858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas.2013-6638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070889028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas.2015-0126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070889998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas1963.222486x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070893197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074795580", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075335894", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1076619967", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2007-0980", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077799697"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-12", 
        "datePublishedReg": "2016-12-01", 
        "description": "In this study, we reviewed six imputation methods (Impute 2, FImpute 2.2, Beagle 4.1, Beagle 3.3.2, MaCH, and Bimbam) and evaluated the accuracy of imputation from simulated 6K bovine SNPs to 50K SNPs with 1800 beef cattle from two purebred and four crossbred populations and the impact of imputed genotypes on performance of genomic predictions for residual feed intake (RFI) in beef cattle. Accuracy of imputation was reported in both concordance rate (CR) and allelic r2 and assessed via fivefold cross-validations. Running times of different methods were compared. Impute 2, FImpute and Beagle 4.1 yielded the most accurate imputation results (with CR > 91%). FImpute was the fastest and had advantages over all other methods in imputing rare variants. Minor allele frequency (MAF) and genetic relatedness between individuals in reference and validation populations can affect accuracy of imputation. For all methods, imputation accuracy for genotypes carrying the minor allele increases as the MAF increases. Impute 2 outperformed all other methods on MAF > 5% and onwards. FImpute and Impute 2 that adopted the nearest neighbour scheme coped better with individuals of distant relativeness. Bimbam yielded the poorest CR (76%) due to admixed reference panels. Imputed genotypes and actual 50K/6K genotypes were employed to predict genomic breeding values (GEBVs) of RFI using a Bayesian method and GBLUP. Accuracies of GEBV were similar using actual 50K genotypes or imputed genotypes, except those from Bimbam, and the imputation errors had minimal impact on the genomic predictions.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s40362-017-0041-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136608", 
            "issn": [
              "2213-7793"
            ], 
            "name": "Springer Science Reviews", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "Genotype Imputation Methods and Their Effects on Genomic Predictions in Cattle", 
        "pagination": "79-98", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5160124d4a7b199694da421e3566050a2cd944713c97f10e30ffbcca6ce18473"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40362-017-0041-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1083881925"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40362-017-0041-x", 
          "https://app.dimensions.ai/details/publication/pub.1083881925"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99806_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs40362-017-0041-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40362-017-0041-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40362-017-0041-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40362-017-0041-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40362-017-0041-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    370 TRIPLES      21 PREDICATES      112 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40362-017-0041-x schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N3104a48b48084979b3c76f86806e6010
    4 schema:citation sg:pub.10.1007/s00439-007-0427-y
    5 sg:pub.10.1007/s00439-008-0568-7
    6 sg:pub.10.1038/hdy.2013.13
    7 sg:pub.10.1038/nature04226
    8 sg:pub.10.1038/nbt0409-349
    9 sg:pub.10.1038/ng.216
    10 sg:pub.10.1038/ng.2354
    11 sg:pub.10.1038/ng.3034
    12 sg:pub.10.1038/ng1547
    13 sg:pub.10.1038/ng2088
    14 sg:pub.10.1038/nmeth.1785
    15 sg:pub.10.1038/nmeth842
    16 sg:pub.10.1038/nrg2779
    17 sg:pub.10.1038/nrg2796
    18 sg:pub.10.1038/nrg3054
    19 sg:pub.10.1186/1297-9686-34-4-409
    20 sg:pub.10.1186/1297-9686-43-18
    21 sg:pub.10.1186/1297-9686-44-25
    22 sg:pub.10.1186/1297-9686-44-9
    23 sg:pub.10.1186/1297-9686-45-12
    24 sg:pub.10.1186/1297-9686-45-33
    25 sg:pub.10.1186/1297-9686-46-41
    26 sg:pub.10.1186/1471-2164-13-538
    27 sg:pub.10.1186/1471-2164-15-1004
    28 sg:pub.10.1186/1471-2164-15-478
    29 sg:pub.10.1186/s12711-014-0081-5
    30 sg:pub.10.1186/s12711-015-0100-1
    31 sg:pub.10.1186/s12711-015-0149-x
    32 sg:pub.10.1186/s12711-016-0255-4
    33 sg:pub.10.1186/s12863-014-0105-8
    34 sg:pub.10.1186/s12863-014-0157-9
    35 sg:pub.10.1186/s12863-015-0251-7
    36 https://app.dimensions.ai/details/publication/pub.1074795580
    37 https://app.dimensions.ai/details/publication/pub.1075335894
    38 https://app.dimensions.ai/details/publication/pub.1076619967
    39 https://doi.org/10.1002/gepi.20533
    40 https://doi.org/10.1002/gepi.21844
    41 https://doi.org/10.1016/j.ajhg.2009.01.013
    42 https://doi.org/10.1016/j.ajhg.2013.02.011
    43 https://doi.org/10.1016/j.livsci.2014.05.008
    44 https://doi.org/10.1017/s1751731114001803
    45 https://doi.org/10.1086/502802
    46 https://doi.org/10.1086/503876
    47 https://doi.org/10.1086/521987
    48 https://doi.org/10.1089/cmb.2005.12.1243
    49 https://doi.org/10.1101/gr.081398.108
    50 https://doi.org/10.1101/gr.145821.112
    51 https://doi.org/10.1111/j.1439-0388.2011.00964.x
    52 https://doi.org/10.1111/jbg.12067
    53 https://doi.org/10.1137/1026034
    54 https://doi.org/10.1214/10-aoas338
    55 https://doi.org/10.1371/journal.pgen.0030114
    56 https://doi.org/10.1371/journal.pgen.1000279
    57 https://doi.org/10.1371/journal.pgen.1000529
    58 https://doi.org/10.1371/journal.pgen.1004234
    59 https://doi.org/10.1371/journal.pone.0005350
    60 https://doi.org/10.1371/journal.pone.0034130
    61 https://doi.org/10.1371/journal.pone.0101544
    62 https://doi.org/10.1534/g3.111.001198
    63 https://doi.org/10.1534/genetics.107.081190
    64 https://doi.org/10.1534/genetics.109.104935
    65 https://doi.org/10.1534/genetics.110.116855
    66 https://doi.org/10.1534/genetics.113.150029
    67 https://doi.org/10.1534/genetics.113.152207
    68 https://doi.org/10.1534/genetics.113.160697
    69 https://doi.org/10.2135/cropsci2011.07.0358
    70 https://doi.org/10.2527/1997.7571738x
    71 https://doi.org/10.2527/jam2016-0322
    72 https://doi.org/10.2527/jas.2010-3361
    73 https://doi.org/10.2527/jas.2013-5715
    74 https://doi.org/10.2527/jas.2013-6638
    75 https://doi.org/10.2527/jas.2015-0126
    76 https://doi.org/10.2527/jas1963.222486x
    77 https://doi.org/10.3168/jds.2007-0980
    78 https://doi.org/10.3168/jds.2008-1514
    79 https://doi.org/10.3168/jds.2008-1646
    80 https://doi.org/10.3168/jds.2011-4490
    81 https://doi.org/10.3168/jds.2011-4628
    82 https://doi.org/10.3168/jds.2011-5019
    83 https://doi.org/10.3168/jds.2012-5702
    84 https://doi.org/10.3168/jds.2013-6855
    85 https://doi.org/10.3168/jds.2013-7227
    86 https://doi.org/10.3168/jds.2014-9170
    87 https://doi.org/10.3389/fgene.2012.00140
    88 https://doi.org/10.4141/cjas2011-010
    89 schema:datePublished 2016-12
    90 schema:datePublishedReg 2016-12-01
    91 schema:description In this study, we reviewed six imputation methods (Impute 2, FImpute 2.2, Beagle 4.1, Beagle 3.3.2, MaCH, and Bimbam) and evaluated the accuracy of imputation from simulated 6K bovine SNPs to 50K SNPs with 1800 beef cattle from two purebred and four crossbred populations and the impact of imputed genotypes on performance of genomic predictions for residual feed intake (RFI) in beef cattle. Accuracy of imputation was reported in both concordance rate (CR) and allelic r2 and assessed via fivefold cross-validations. Running times of different methods were compared. Impute 2, FImpute and Beagle 4.1 yielded the most accurate imputation results (with CR > 91%). FImpute was the fastest and had advantages over all other methods in imputing rare variants. Minor allele frequency (MAF) and genetic relatedness between individuals in reference and validation populations can affect accuracy of imputation. For all methods, imputation accuracy for genotypes carrying the minor allele increases as the MAF increases. Impute 2 outperformed all other methods on MAF > 5% and onwards. FImpute and Impute 2 that adopted the nearest neighbour scheme coped better with individuals of distant relativeness. Bimbam yielded the poorest CR (76%) due to admixed reference panels. Imputed genotypes and actual 50K/6K genotypes were employed to predict genomic breeding values (GEBVs) of RFI using a Bayesian method and GBLUP. Accuracies of GEBV were similar using actual 50K genotypes or imputed genotypes, except those from Bimbam, and the imputation errors had minimal impact on the genomic predictions.
    92 schema:genre research_article
    93 schema:inLanguage en
    94 schema:isAccessibleForFree true
    95 schema:isPartOf N48a9b828408948859e6ef4534d12df03
    96 Na03e19012fa04d1d98fd3e017ca8a72d
    97 sg:journal.1136608
    98 schema:name Genotype Imputation Methods and Their Effects on Genomic Predictions in Cattle
    99 schema:pagination 79-98
    100 schema:productId N54e864a90f004e2e9ac9e1f042acad61
    101 Nde2acbae9ced4890bbc96edb9220ebce
    102 Nf019efdbe3f0475798b3b39a747ebca6
    103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083881925
    104 https://doi.org/10.1007/s40362-017-0041-x
    105 schema:sdDatePublished 2019-04-11T09:32
    106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    107 schema:sdPublisher Nd6023098a3284afe84c4a6f5b08812e6
    108 schema:url https://link.springer.com/10.1007%2Fs40362-017-0041-x
    109 sgo:license sg:explorer/license/
    110 sgo:sdDataset articles
    111 rdf:type schema:ScholarlyArticle
    112 N3104a48b48084979b3c76f86806e6010 rdf:first sg:person.0751662156.20
    113 rdf:rest Nce394fffb2254ea3a88734690fb46801
    114 N48a9b828408948859e6ef4534d12df03 schema:volumeNumber 4
    115 rdf:type schema:PublicationVolume
    116 N54e864a90f004e2e9ac9e1f042acad61 schema:name doi
    117 schema:value 10.1007/s40362-017-0041-x
    118 rdf:type schema:PropertyValue
    119 N98f19c2876b14c4ab36a682bd7e0b8af rdf:first sg:person.01253271101.20
    120 rdf:rest Nd2cdee5fb7f94b2aa279f9ebfc2cc926
    121 Na03e19012fa04d1d98fd3e017ca8a72d schema:issueNumber 2
    122 rdf:type schema:PublicationIssue
    123 Nce394fffb2254ea3a88734690fb46801 rdf:first sg:person.01130357621.02
    124 rdf:rest N98f19c2876b14c4ab36a682bd7e0b8af
    125 Nd2cdee5fb7f94b2aa279f9ebfc2cc926 rdf:first sg:person.01011707421.00
    126 rdf:rest rdf:nil
    127 Nd6023098a3284afe84c4a6f5b08812e6 schema:name Springer Nature - SN SciGraph project
    128 rdf:type schema:Organization
    129 Nde2acbae9ced4890bbc96edb9220ebce schema:name readcube_id
    130 schema:value 5160124d4a7b199694da421e3566050a2cd944713c97f10e30ffbcca6ce18473
    131 rdf:type schema:PropertyValue
    132 Nf019efdbe3f0475798b3b39a747ebca6 schema:name dimensions_id
    133 schema:value pub.1083881925
    134 rdf:type schema:PropertyValue
    135 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Biological Sciences
    137 rdf:type schema:DefinedTerm
    138 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Genetics
    140 rdf:type schema:DefinedTerm
    141 sg:journal.1136608 schema:issn 2213-7793
    142 schema:name Springer Science Reviews
    143 rdf:type schema:Periodical
    144 sg:person.01011707421.00 schema:affiliation https://www.grid.ac/institutes/grid.17089.37
    145 schema:familyName Stothard
    146 schema:givenName Paul
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011707421.00
    148 rdf:type schema:Person
    149 sg:person.01130357621.02 schema:affiliation https://www.grid.ac/institutes/grid.17089.37
    150 schema:familyName Lin
    151 schema:givenName Guohui
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130357621.02
    153 rdf:type schema:Person
    154 sg:person.01253271101.20 schema:affiliation https://www.grid.ac/institutes/grid.55614.33
    155 schema:familyName Li
    156 schema:givenName Changxi
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253271101.20
    158 rdf:type schema:Person
    159 sg:person.0751662156.20 schema:affiliation https://www.grid.ac/institutes/grid.17089.37
    160 schema:familyName Wang
    161 schema:givenName Yining
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751662156.20
    163 rdf:type schema:Person
    164 sg:pub.10.1007/s00439-007-0427-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1023972121
    165 https://doi.org/10.1007/s00439-007-0427-y
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s00439-008-0568-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043727385
    168 https://doi.org/10.1007/s00439-008-0568-7
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/hdy.2013.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013905892
    171 https://doi.org/10.1038/hdy.2013.13
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/nature04226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017293702
    174 https://doi.org/10.1038/nature04226
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/nbt0409-349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022719327
    177 https://doi.org/10.1038/nbt0409-349
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/ng.216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045032711
    180 https://doi.org/10.1038/ng.216
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/ng.2354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029723318
    183 https://doi.org/10.1038/ng.2354
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/ng.3034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028025360
    186 https://doi.org/10.1038/ng.3034
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/ng1547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050284813
    189 https://doi.org/10.1038/ng1547
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/ng2088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046979341
    192 https://doi.org/10.1038/ng2088
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nmeth.1785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002640757
    195 https://doi.org/10.1038/nmeth.1785
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nmeth842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031918541
    198 https://doi.org/10.1038/nmeth842
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nrg2779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050625874
    201 https://doi.org/10.1038/nrg2779
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nrg2796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009739594
    204 https://doi.org/10.1038/nrg2796
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nrg3054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004015204
    207 https://doi.org/10.1038/nrg3054
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1186/1297-9686-34-4-409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007619332
    210 https://doi.org/10.1186/1297-9686-34-4-409
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1186/1297-9686-43-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016307699
    213 https://doi.org/10.1186/1297-9686-43-18
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1186/1297-9686-44-25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015954765
    216 https://doi.org/10.1186/1297-9686-44-25
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1186/1297-9686-44-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000892001
    219 https://doi.org/10.1186/1297-9686-44-9
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1186/1297-9686-45-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053067542
    222 https://doi.org/10.1186/1297-9686-45-12
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1186/1297-9686-45-33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044648377
    225 https://doi.org/10.1186/1297-9686-45-33
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1186/1297-9686-46-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019198414
    228 https://doi.org/10.1186/1297-9686-46-41
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1186/1471-2164-13-538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025285161
    231 https://doi.org/10.1186/1471-2164-13-538
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1186/1471-2164-15-1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040940319
    234 https://doi.org/10.1186/1471-2164-15-1004
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1186/1471-2164-15-478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025098925
    237 https://doi.org/10.1186/1471-2164-15-478
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1186/s12711-014-0081-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008715599
    240 https://doi.org/10.1186/s12711-014-0081-5
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1186/s12711-015-0100-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040725212
    243 https://doi.org/10.1186/s12711-015-0100-1
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1186/s12711-015-0149-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005286567
    246 https://doi.org/10.1186/s12711-015-0149-x
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1186/s12711-016-0255-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016751595
    249 https://doi.org/10.1186/s12711-016-0255-4
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1186/s12863-014-0105-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002690657
    252 https://doi.org/10.1186/s12863-014-0105-8
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1186/s12863-014-0157-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035759994
    255 https://doi.org/10.1186/s12863-014-0157-9
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1186/s12863-015-0251-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053382980
    258 https://doi.org/10.1186/s12863-015-0251-7
    259 rdf:type schema:CreativeWork
    260 https://app.dimensions.ai/details/publication/pub.1074795580 schema:CreativeWork
    261 https://app.dimensions.ai/details/publication/pub.1075335894 schema:CreativeWork
    262 https://app.dimensions.ai/details/publication/pub.1076619967 schema:CreativeWork
    263 https://doi.org/10.1002/gepi.20533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039500245
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1002/gepi.21844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012117598
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1016/j.ajhg.2009.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005049647
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1016/j.ajhg.2013.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030053897
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1016/j.livsci.2014.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034316330
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1017/s1751731114001803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053582568
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1086/502802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058783626
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1086/503876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039624779
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1086/521987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052475645
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1089/cmb.2005.12.1243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245323
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1101/gr.081398.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023066056
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1101/gr.145821.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048835228
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1111/j.1439-0388.2011.00964.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049588480
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1111/jbg.12067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046072173
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1137/1026034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062861996
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1214/10-aoas338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041182716
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1371/journal.pgen.0030114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014364350
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1371/journal.pgen.1000279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046453067
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1371/journal.pgen.1000529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043446290
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1371/journal.pgen.1004234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038438273
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1371/journal.pone.0005350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020552743
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1371/journal.pone.0034130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004607744
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1371/journal.pone.0101544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042231987
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1534/g3.111.001198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037455212
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1534/genetics.107.081190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017395594
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1534/genetics.109.104935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022734992
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1534/genetics.110.116855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039215498
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1534/genetics.113.150029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025094141
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1534/genetics.113.152207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029898878
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1534/genetics.113.160697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022281482
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.2135/cropsci2011.07.0358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069031573
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.2527/1997.7571738x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070880019
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.2527/jam2016-0322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070883992
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.2527/jas.2010-3361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070887577
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.2527/jas.2013-5715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070888858
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.2527/jas.2013-6638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070889028
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.2527/jas.2015-0126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070889998
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.2527/jas1963.222486x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070893197
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.3168/jds.2007-0980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077799697
    340 rdf:type schema:CreativeWork
    341 https://doi.org/10.3168/jds.2008-1514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028885396
    342 rdf:type schema:CreativeWork
    343 https://doi.org/10.3168/jds.2008-1646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029683381
    344 rdf:type schema:CreativeWork
    345 https://doi.org/10.3168/jds.2011-4490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031750140
    346 rdf:type schema:CreativeWork
    347 https://doi.org/10.3168/jds.2011-4628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040730668
    348 rdf:type schema:CreativeWork
    349 https://doi.org/10.3168/jds.2011-5019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048827920
    350 rdf:type schema:CreativeWork
    351 https://doi.org/10.3168/jds.2012-5702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053191208
    352 rdf:type schema:CreativeWork
    353 https://doi.org/10.3168/jds.2013-6855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052207350
    354 rdf:type schema:CreativeWork
    355 https://doi.org/10.3168/jds.2013-7227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002026544
    356 rdf:type schema:CreativeWork
    357 https://doi.org/10.3168/jds.2014-9170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023991441
    358 rdf:type schema:CreativeWork
    359 https://doi.org/10.3389/fgene.2012.00140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010886788
    360 rdf:type schema:CreativeWork
    361 https://doi.org/10.4141/cjas2011-010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041504732
    362 rdf:type schema:CreativeWork
    363 https://www.grid.ac/institutes/grid.17089.37 schema:alternateName University of Alberta
    364 schema:name Department of Computing Science, University of Alberta, Edmonton, AB, Canada
    365 Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
    366 rdf:type schema:Organization
    367 https://www.grid.ac/institutes/grid.55614.33 schema:alternateName Agriculture and Agriculture-Food Canada
    368 schema:name Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C & E Trail, Lacombe, AB, Canada
    369 Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
    370 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...