Irregular functions and fractal objects: from Weierstrass to Mandelbrot View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10

AUTHORS

Angelo Vulpiani

ABSTRACT

The aim of this paper is to show the origins of fractal geometry in the mathematical work of Weierstrass, Peano, Julia and Hausdorff, as well as from input from studies on Brownian motion and turbulence in physics by Richardson, Perrin and Kolmogorov. It concludes with a brief review of some of the many applications of fractal geometry in science and technology. More... »

PAGES

115-123

References to SciGraph publications

Journal

TITLE

Lettera Matematica

ISSUE

2

VOLUME

4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40329-016-0139-z

DOI

http://dx.doi.org/10.1007/s40329-016-0139-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003348504


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 degli Studi di Roma \u201cLa Sapienza\u201d, Piazzale Aldo Moro 2, 00185, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vulpiani", 
        "givenName": "Angelo", 
        "id": "sg:person.01352261626.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/1751-8113/41/36/363001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015824598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40329-014-0063-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023306369", 
          "https://doi.org/10.1007/s40329-014-0063-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2005.1550188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061422409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139174695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098668573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511803260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098677710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/8577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098862632"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10", 
    "datePublishedReg": "2016-10-01", 
    "description": "The aim of this paper is to show the origins of fractal geometry in the mathematical work of Weierstrass, Peano, Julia and Hausdorff, as well as from input from studies on Brownian motion and turbulence in physics by Richardson, Perrin and Kolmogorov. It concludes with a brief review of some of the many applications of fractal geometry in science and technology.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40329-016-0139-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136444", 
        "issn": [
          "2281-6917", 
          "2281-5937"
        ], 
        "name": "Lettera Matematica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Irregular functions and fractal objects: from Weierstrass to Mandelbrot", 
    "pagination": "115-123", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0ff32a0b039b37d55d1f4b445e16be54389cf335fa735594b09243b64fb77464"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40329-016-0139-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003348504"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40329-016-0139-z", 
      "https://app.dimensions.ai/details/publication/pub.1003348504"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70028_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40329-016-0139-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40329-016-0139-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40329-016-0139-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40329-016-0139-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40329-016-0139-z'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40329-016-0139-z schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N99b590ccf1464f1ebabe94c446924b87
4 schema:citation sg:pub.10.1007/s40329-014-0063-z
5 https://doi.org/10.1017/cbo9780511803260
6 https://doi.org/10.1017/cbo9781139174695
7 https://doi.org/10.1088/1751-8113/41/36/363001
8 https://doi.org/10.1109/msp.2005.1550188
9 https://doi.org/10.1142/8577
10 schema:datePublished 2016-10
11 schema:datePublishedReg 2016-10-01
12 schema:description The aim of this paper is to show the origins of fractal geometry in the mathematical work of Weierstrass, Peano, Julia and Hausdorff, as well as from input from studies on Brownian motion and turbulence in physics by Richardson, Perrin and Kolmogorov. It concludes with a brief review of some of the many applications of fractal geometry in science and technology.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Nbbdf6b44fe5c4d7894cfcf8354ec6f16
17 Nc0274a55d0824bcaaf261878210c2be7
18 sg:journal.1136444
19 schema:name Irregular functions and fractal objects: from Weierstrass to Mandelbrot
20 schema:pagination 115-123
21 schema:productId N16331ac550d84801b8af3ab3be360310
22 N69b6a83a36ae4e8f89f8d7342fe6462c
23 N6f01fed3ff3c48218129d7c23786950f
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003348504
25 https://doi.org/10.1007/s40329-016-0139-z
26 schema:sdDatePublished 2019-04-11T12:35
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N51994a253da74abc851b6f20e40863e0
29 schema:url https://link.springer.com/10.1007%2Fs40329-016-0139-z
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N16331ac550d84801b8af3ab3be360310 schema:name doi
34 schema:value 10.1007/s40329-016-0139-z
35 rdf:type schema:PropertyValue
36 N51994a253da74abc851b6f20e40863e0 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N69b6a83a36ae4e8f89f8d7342fe6462c schema:name dimensions_id
39 schema:value pub.1003348504
40 rdf:type schema:PropertyValue
41 N6f01fed3ff3c48218129d7c23786950f schema:name readcube_id
42 schema:value 0ff32a0b039b37d55d1f4b445e16be54389cf335fa735594b09243b64fb77464
43 rdf:type schema:PropertyValue
44 N99b590ccf1464f1ebabe94c446924b87 rdf:first sg:person.01352261626.07
45 rdf:rest rdf:nil
46 Nbbdf6b44fe5c4d7894cfcf8354ec6f16 schema:volumeNumber 4
47 rdf:type schema:PublicationVolume
48 Nc0274a55d0824bcaaf261878210c2be7 schema:issueNumber 2
49 rdf:type schema:PublicationIssue
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1136444 schema:issn 2281-5937
57 2281-6917
58 schema:name Lettera Matematica
59 rdf:type schema:Periodical
60 sg:person.01352261626.07 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
61 schema:familyName Vulpiani
62 schema:givenName Angelo
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07
64 rdf:type schema:Person
65 sg:pub.10.1007/s40329-014-0063-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023306369
66 https://doi.org/10.1007/s40329-014-0063-z
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1017/cbo9780511803260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098677710
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1017/cbo9781139174695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098668573
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1088/1751-8113/41/36/363001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015824598
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1109/msp.2005.1550188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061422409
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1142/8577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098862632
77 rdf:type schema:CreativeWork
78 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
79 schema:name Dipartimento di Fisica, Università degli Studi di Roma “La Sapienza”, Piazzale Aldo Moro 2, 00185, Rome, Italy
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...