Edge enhancement of potential field data using the logistic function and the total horizontal gradient View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Luan Thanh Pham, Erdinc Oksum, Thanh Duc Do

ABSTRACT

Locating the edges of anomalous bodies provides a fundamental tool in the geologic interpretation of potential field data. This paper compares the effectiveness of the commonly used edge detection methods such as the total horizontal gradient, analytic signal, tilt angle, theta map and their modified versions in terms of their accuracy on the determination of edges of source bodies. This paper also introduces an edge detector method for the enhancement of potential field anomalies, which is based on the logistic function of the total horizontal gradient. The new method is tested on synthetic data calculated using 3 models, and also on real magnetic and gravity data from Vietnam. The effectiveness of the method is evaluated by comparing the results with those of other popular methods. These results demonstrate that the method is a useful tool for the qualitative interpretation of potential field data. More... »

PAGES

143-155

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40328-019-00248-6

DOI

http://dx.doi.org/10.1007/s40328-019-00248-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111752388


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "VNU University of Science", 
          "id": "https://www.grid.ac/institutes/grid.493130.c", 
          "name": [
            "Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Vietnam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pham", 
        "givenName": "Luan Thanh", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "S\u00fcleyman Demirel University", 
          "id": "https://www.grid.ac/institutes/grid.45978.37", 
          "name": [
            "Department of Geophyisical Engineering, Engineering Faculty, S\u00fcleyman Demirel University, 32260, Isparta, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oksum", 
        "givenName": "Erdinc", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VNU University of Science", 
          "id": "https://www.grid.ac/institutes/grid.493130.c", 
          "name": [
            "Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Vietnam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Do", 
        "givenName": "Thanh Duc", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1190/1.2837309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002441076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/tle32080892.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004481244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cageo.2011.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006716695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40328-016-0171-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011350164", 
          "https://doi.org/10.1007/s40328-016-0171-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40328-016-0171-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011350164", 
          "https://doi.org/10.1007/s40328-016-0171-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/eg13104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013355290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0926-9851(94)90022-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014308260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0926-9851(94)90022-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014308260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2478.1990.tb01854.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020607830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1443174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024397898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1988184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031036942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gsf.2013.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034741340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/geo2011-0441.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039335499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cageo.2006.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041741793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.3096615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043828506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gr.2011.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044450347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40328-015-0120-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045291044", 
          "https://doi.org/10.1007/s40328-015-0120-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1651454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064141249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/geo2013-0319.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064143355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/geo2013-0473.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064143451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/geo2016-0099.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084253491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/geo2016-0364.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084253534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cjg2.30039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085999324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15625/0866-7187/39/4/10731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092108599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.0931830346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101153599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s001685211803007x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104372781", 
          "https://doi.org/10.1134/s001685211803007x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s001685211803007x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104372781", 
          "https://doi.org/10.1134/s001685211803007x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s001685211803007x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104372781", 
          "https://doi.org/10.1134/s001685211803007x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Locating the edges of anomalous bodies provides a fundamental tool in the geologic interpretation of potential field data. This paper compares the effectiveness of the commonly used edge detection methods such as the total horizontal gradient, analytic signal, tilt angle, theta map and their modified versions in terms of their accuracy on the determination of edges of source bodies. This paper also introduces an edge detector method for the enhancement of potential field anomalies, which is based on the logistic function of the total horizontal gradient. The new method is tested on synthetic data calculated using 3 models, and also on real magnetic and gravity data from Vietnam. The effectiveness of the method is evaluated by comparing the results with those of other popular methods. These results demonstrate that the method is a useful tool for the qualitative interpretation of potential field data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40328-019-00248-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136254", 
        "issn": [
          "2213-5812", 
          "2213-5820"
        ], 
        "name": "Acta Geodaetica et Geophysica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "name": "Edge enhancement of potential field data using the logistic function and the total horizontal gradient", 
    "pagination": "143-155", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6412d6dff417048d26af0abde1484dfc1c55fbb3feb2fc1386aad68b20d59357"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40328-019-00248-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111752388"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40328-019-00248-6", 
      "https://app.dimensions.ai/details/publication/pub.1111752388"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113639_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40328-019-00248-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40328-019-00248-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40328-019-00248-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40328-019-00248-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40328-019-00248-6'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40328-019-00248-6 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N22e7b884b60b41b681ab94b0ed523b6d
4 schema:citation sg:pub.10.1007/s40328-015-0120-x
5 sg:pub.10.1007/s40328-016-0171-7
6 sg:pub.10.1134/s001685211803007x
7 https://doi.org/10.1002/cjg2.30039
8 https://doi.org/10.1016/0926-9851(94)90022-1
9 https://doi.org/10.1016/j.cageo.2006.02.016
10 https://doi.org/10.1016/j.cageo.2011.08.016
11 https://doi.org/10.1016/j.gr.2011.10.011
12 https://doi.org/10.1016/j.gsf.2013.04.006
13 https://doi.org/10.1071/eg13104
14 https://doi.org/10.1111/j.1365-2478.1990.tb01854.x
15 https://doi.org/10.1190/1.0931830346
16 https://doi.org/10.1190/1.1443174
17 https://doi.org/10.1190/1.1651454
18 https://doi.org/10.1190/1.1988184
19 https://doi.org/10.1190/1.2837309
20 https://doi.org/10.1190/1.3096615
21 https://doi.org/10.1190/geo2011-0441.1
22 https://doi.org/10.1190/geo2013-0319.1
23 https://doi.org/10.1190/geo2013-0473.1
24 https://doi.org/10.1190/geo2016-0099.1
25 https://doi.org/10.1190/geo2016-0364.1
26 https://doi.org/10.1190/tle32080892.1
27 https://doi.org/10.15625/0866-7187/39/4/10731
28 schema:datePublished 2019-03
29 schema:datePublishedReg 2019-03-01
30 schema:description Locating the edges of anomalous bodies provides a fundamental tool in the geologic interpretation of potential field data. This paper compares the effectiveness of the commonly used edge detection methods such as the total horizontal gradient, analytic signal, tilt angle, theta map and their modified versions in terms of their accuracy on the determination of edges of source bodies. This paper also introduces an edge detector method for the enhancement of potential field anomalies, which is based on the logistic function of the total horizontal gradient. The new method is tested on synthetic data calculated using 3 models, and also on real magnetic and gravity data from Vietnam. The effectiveness of the method is evaluated by comparing the results with those of other popular methods. These results demonstrate that the method is a useful tool for the qualitative interpretation of potential field data.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N565618371540406caa1a1a8e0c95119f
35 Ndf327a6d01af443bb2b08a6b73212161
36 sg:journal.1136254
37 schema:name Edge enhancement of potential field data using the logistic function and the total horizontal gradient
38 schema:pagination 143-155
39 schema:productId N18a5e9c3d1264ca9a1a924b7bfc19e23
40 N71212af1c19140d793e06b57b9c04903
41 Nde15956b7db8446da98dce6e03995e7b
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111752388
43 https://doi.org/10.1007/s40328-019-00248-6
44 schema:sdDatePublished 2019-04-11T10:27
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N9522ffbf025140609672422bcff75729
47 schema:url https://link.springer.com/10.1007%2Fs40328-019-00248-6
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N18a5e9c3d1264ca9a1a924b7bfc19e23 schema:name doi
52 schema:value 10.1007/s40328-019-00248-6
53 rdf:type schema:PropertyValue
54 N1ec97dedfea04e89ae0f3cb1556174f6 schema:affiliation https://www.grid.ac/institutes/grid.45978.37
55 schema:familyName Oksum
56 schema:givenName Erdinc
57 rdf:type schema:Person
58 N22e7b884b60b41b681ab94b0ed523b6d rdf:first Nf90c96e57f9d4b59a62a3898782cc7a1
59 rdf:rest N7cdfd74c856c4750bb5ab5e80f094e10
60 N2b86ca4d2da146c4938f178b1014a3bc rdf:first N3ac75d326b4b44b3aedc36617484f232
61 rdf:rest rdf:nil
62 N3ac75d326b4b44b3aedc36617484f232 schema:affiliation https://www.grid.ac/institutes/grid.493130.c
63 schema:familyName Do
64 schema:givenName Thanh Duc
65 rdf:type schema:Person
66 N565618371540406caa1a1a8e0c95119f schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 N71212af1c19140d793e06b57b9c04903 schema:name dimensions_id
69 schema:value pub.1111752388
70 rdf:type schema:PropertyValue
71 N7cdfd74c856c4750bb5ab5e80f094e10 rdf:first N1ec97dedfea04e89ae0f3cb1556174f6
72 rdf:rest N2b86ca4d2da146c4938f178b1014a3bc
73 N9522ffbf025140609672422bcff75729 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Nde15956b7db8446da98dce6e03995e7b schema:name readcube_id
76 schema:value 6412d6dff417048d26af0abde1484dfc1c55fbb3feb2fc1386aad68b20d59357
77 rdf:type schema:PropertyValue
78 Ndf327a6d01af443bb2b08a6b73212161 schema:volumeNumber 54
79 rdf:type schema:PublicationVolume
80 Nf90c96e57f9d4b59a62a3898782cc7a1 schema:affiliation https://www.grid.ac/institutes/grid.493130.c
81 schema:familyName Pham
82 schema:givenName Luan Thanh
83 rdf:type schema:Person
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
88 schema:name Statistics
89 rdf:type schema:DefinedTerm
90 sg:journal.1136254 schema:issn 2213-5812
91 2213-5820
92 schema:name Acta Geodaetica et Geophysica
93 rdf:type schema:Periodical
94 sg:pub.10.1007/s40328-015-0120-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045291044
95 https://doi.org/10.1007/s40328-015-0120-x
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s40328-016-0171-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011350164
98 https://doi.org/10.1007/s40328-016-0171-7
99 rdf:type schema:CreativeWork
100 sg:pub.10.1134/s001685211803007x schema:sameAs https://app.dimensions.ai/details/publication/pub.1104372781
101 https://doi.org/10.1134/s001685211803007x
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1002/cjg2.30039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085999324
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0926-9851(94)90022-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014308260
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.cageo.2006.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041741793
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.cageo.2011.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006716695
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.gr.2011.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044450347
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.gsf.2013.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034741340
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1071/eg13104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013355290
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1111/j.1365-2478.1990.tb01854.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020607830
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1190/1.0931830346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101153599
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1190/1.1443174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024397898
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1190/1.1651454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064141249
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1190/1.1988184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031036942
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1190/1.2837309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002441076
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1190/1.3096615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043828506
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1190/geo2011-0441.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039335499
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1190/geo2013-0319.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064143355
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1190/geo2013-0473.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064143451
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1190/geo2016-0099.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084253491
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1190/geo2016-0364.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084253534
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1190/tle32080892.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004481244
142 rdf:type schema:CreativeWork
143 https://doi.org/10.15625/0866-7187/39/4/10731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092108599
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.45978.37 schema:alternateName Süleyman Demirel University
146 schema:name Department of Geophyisical Engineering, Engineering Faculty, Süleyman Demirel University, 32260, Isparta, Turkey
147 rdf:type schema:Organization
148 https://www.grid.ac/institutes/grid.493130.c schema:alternateName VNU University of Science
149 schema:name Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Vietnam
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...