Edge enhancement of potential field data using the logistic function and the total horizontal gradient View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Luan Thanh Pham, Erdinc Oksum, Thanh Duc Do

ABSTRACT

Locating the edges of anomalous bodies provides a fundamental tool in the geologic interpretation of potential field data. This paper compares the effectiveness of the commonly used edge detection methods such as the total horizontal gradient, analytic signal, tilt angle, theta map and their modified versions in terms of their accuracy on the determination of edges of source bodies. This paper also introduces an edge detector method for the enhancement of potential field anomalies, which is based on the logistic function of the total horizontal gradient. The new method is tested on synthetic data calculated using 3 models, and also on real magnetic and gravity data from Vietnam. The effectiveness of the method is evaluated by comparing the results with those of other popular methods. These results demonstrate that the method is a useful tool for the qualitative interpretation of potential field data. More... »

PAGES

143-155

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40328-019-00248-6

DOI

http://dx.doi.org/10.1007/s40328-019-00248-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111752388


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "VNU University of Science", 
          "id": "https://www.grid.ac/institutes/grid.493130.c", 
          "name": [
            "Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Vietnam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pham", 
        "givenName": "Luan Thanh", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "S\u00fcleyman Demirel University", 
          "id": "https://www.grid.ac/institutes/grid.45978.37", 
          "name": [
            "Department of Geophyisical Engineering, Engineering Faculty, S\u00fcleyman Demirel University, 32260, Isparta, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oksum", 
        "givenName": "Erdinc", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VNU University of Science", 
          "id": "https://www.grid.ac/institutes/grid.493130.c", 
          "name": [
            "Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Vietnam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Do", 
        "givenName": "Thanh Duc", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1190/1.2837309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002441076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/tle32080892.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004481244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cageo.2011.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006716695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40328-016-0171-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011350164", 
          "https://doi.org/10.1007/s40328-016-0171-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40328-016-0171-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011350164", 
          "https://doi.org/10.1007/s40328-016-0171-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/eg13104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013355290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0926-9851(94)90022-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014308260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0926-9851(94)90022-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014308260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2478.1990.tb01854.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020607830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1443174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024397898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1988184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031036942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gsf.2013.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034741340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/geo2011-0441.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039335499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cageo.2006.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041741793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.3096615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043828506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gr.2011.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044450347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40328-015-0120-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045291044", 
          "https://doi.org/10.1007/s40328-015-0120-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1651454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064141249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/geo2013-0319.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064143355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/geo2013-0473.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064143451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/geo2016-0099.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084253491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/geo2016-0364.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084253534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cjg2.30039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085999324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15625/0866-7187/39/4/10731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092108599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.0931830346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101153599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s001685211803007x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104372781", 
          "https://doi.org/10.1134/s001685211803007x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s001685211803007x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104372781", 
          "https://doi.org/10.1134/s001685211803007x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s001685211803007x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104372781", 
          "https://doi.org/10.1134/s001685211803007x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Locating the edges of anomalous bodies provides a fundamental tool in the geologic interpretation of potential field data. This paper compares the effectiveness of the commonly used edge detection methods such as the total horizontal gradient, analytic signal, tilt angle, theta map and their modified versions in terms of their accuracy on the determination of edges of source bodies. This paper also introduces an edge detector method for the enhancement of potential field anomalies, which is based on the logistic function of the total horizontal gradient. The new method is tested on synthetic data calculated using 3 models, and also on real magnetic and gravity data from Vietnam. The effectiveness of the method is evaluated by comparing the results with those of other popular methods. These results demonstrate that the method is a useful tool for the qualitative interpretation of potential field data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40328-019-00248-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136254", 
        "issn": [
          "2213-5812", 
          "2213-5820"
        ], 
        "name": "Acta Geodaetica et Geophysica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "name": "Edge enhancement of potential field data using the logistic function and the total horizontal gradient", 
    "pagination": "143-155", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6412d6dff417048d26af0abde1484dfc1c55fbb3feb2fc1386aad68b20d59357"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40328-019-00248-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111752388"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40328-019-00248-6", 
      "https://app.dimensions.ai/details/publication/pub.1111752388"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113639_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40328-019-00248-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40328-019-00248-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40328-019-00248-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40328-019-00248-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40328-019-00248-6'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40328-019-00248-6 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N95b9ad3db485433bbb28e6e3de4742cd
4 schema:citation sg:pub.10.1007/s40328-015-0120-x
5 sg:pub.10.1007/s40328-016-0171-7
6 sg:pub.10.1134/s001685211803007x
7 https://doi.org/10.1002/cjg2.30039
8 https://doi.org/10.1016/0926-9851(94)90022-1
9 https://doi.org/10.1016/j.cageo.2006.02.016
10 https://doi.org/10.1016/j.cageo.2011.08.016
11 https://doi.org/10.1016/j.gr.2011.10.011
12 https://doi.org/10.1016/j.gsf.2013.04.006
13 https://doi.org/10.1071/eg13104
14 https://doi.org/10.1111/j.1365-2478.1990.tb01854.x
15 https://doi.org/10.1190/1.0931830346
16 https://doi.org/10.1190/1.1443174
17 https://doi.org/10.1190/1.1651454
18 https://doi.org/10.1190/1.1988184
19 https://doi.org/10.1190/1.2837309
20 https://doi.org/10.1190/1.3096615
21 https://doi.org/10.1190/geo2011-0441.1
22 https://doi.org/10.1190/geo2013-0319.1
23 https://doi.org/10.1190/geo2013-0473.1
24 https://doi.org/10.1190/geo2016-0099.1
25 https://doi.org/10.1190/geo2016-0364.1
26 https://doi.org/10.1190/tle32080892.1
27 https://doi.org/10.15625/0866-7187/39/4/10731
28 schema:datePublished 2019-03
29 schema:datePublishedReg 2019-03-01
30 schema:description Locating the edges of anomalous bodies provides a fundamental tool in the geologic interpretation of potential field data. This paper compares the effectiveness of the commonly used edge detection methods such as the total horizontal gradient, analytic signal, tilt angle, theta map and their modified versions in terms of their accuracy on the determination of edges of source bodies. This paper also introduces an edge detector method for the enhancement of potential field anomalies, which is based on the logistic function of the total horizontal gradient. The new method is tested on synthetic data calculated using 3 models, and also on real magnetic and gravity data from Vietnam. The effectiveness of the method is evaluated by comparing the results with those of other popular methods. These results demonstrate that the method is a useful tool for the qualitative interpretation of potential field data.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N51b314be3a584df79b7829583407d8f2
35 Ncd7bf2a6859a4a028c63ea156d4f7935
36 sg:journal.1136254
37 schema:name Edge enhancement of potential field data using the logistic function and the total horizontal gradient
38 schema:pagination 143-155
39 schema:productId N66a7262402b847bb905fd6f698544ef9
40 N8d7e4c650a694dff8d346a8db2483b5f
41 Nbd5fb1f37c5845d296852b40a4c65bb9
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111752388
43 https://doi.org/10.1007/s40328-019-00248-6
44 schema:sdDatePublished 2019-04-11T10:27
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N38355688b1bd4d58997ffa42728b555e
47 schema:url https://link.springer.com/10.1007%2Fs40328-019-00248-6
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N032f6f1e24d64e758c70d9b49bbd9346 schema:affiliation https://www.grid.ac/institutes/grid.493130.c
52 schema:familyName Do
53 schema:givenName Thanh Duc
54 rdf:type schema:Person
55 N38355688b1bd4d58997ffa42728b555e schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N39973bcb35e845f1bbbe07eb5eb89a73 rdf:first N79af2118a77c445aad14fba2431e3647
58 rdf:rest N5b8e16c837d84aeb8a2702c24357cf7c
59 N51b314be3a584df79b7829583407d8f2 schema:issueNumber 1
60 rdf:type schema:PublicationIssue
61 N5b8e16c837d84aeb8a2702c24357cf7c rdf:first N032f6f1e24d64e758c70d9b49bbd9346
62 rdf:rest rdf:nil
63 N66a7262402b847bb905fd6f698544ef9 schema:name readcube_id
64 schema:value 6412d6dff417048d26af0abde1484dfc1c55fbb3feb2fc1386aad68b20d59357
65 rdf:type schema:PropertyValue
66 N79af2118a77c445aad14fba2431e3647 schema:affiliation https://www.grid.ac/institutes/grid.45978.37
67 schema:familyName Oksum
68 schema:givenName Erdinc
69 rdf:type schema:Person
70 N8d7e4c650a694dff8d346a8db2483b5f schema:name dimensions_id
71 schema:value pub.1111752388
72 rdf:type schema:PropertyValue
73 N95b9ad3db485433bbb28e6e3de4742cd rdf:first Na09488e04754423bac45de3239b180f8
74 rdf:rest N39973bcb35e845f1bbbe07eb5eb89a73
75 Na09488e04754423bac45de3239b180f8 schema:affiliation https://www.grid.ac/institutes/grid.493130.c
76 schema:familyName Pham
77 schema:givenName Luan Thanh
78 rdf:type schema:Person
79 Nbd5fb1f37c5845d296852b40a4c65bb9 schema:name doi
80 schema:value 10.1007/s40328-019-00248-6
81 rdf:type schema:PropertyValue
82 Ncd7bf2a6859a4a028c63ea156d4f7935 schema:volumeNumber 54
83 rdf:type schema:PublicationVolume
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
88 schema:name Statistics
89 rdf:type schema:DefinedTerm
90 sg:journal.1136254 schema:issn 2213-5812
91 2213-5820
92 schema:name Acta Geodaetica et Geophysica
93 rdf:type schema:Periodical
94 sg:pub.10.1007/s40328-015-0120-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045291044
95 https://doi.org/10.1007/s40328-015-0120-x
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s40328-016-0171-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011350164
98 https://doi.org/10.1007/s40328-016-0171-7
99 rdf:type schema:CreativeWork
100 sg:pub.10.1134/s001685211803007x schema:sameAs https://app.dimensions.ai/details/publication/pub.1104372781
101 https://doi.org/10.1134/s001685211803007x
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1002/cjg2.30039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085999324
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0926-9851(94)90022-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014308260
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.cageo.2006.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041741793
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.cageo.2011.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006716695
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.gr.2011.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044450347
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.gsf.2013.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034741340
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1071/eg13104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013355290
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1111/j.1365-2478.1990.tb01854.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020607830
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1190/1.0931830346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101153599
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1190/1.1443174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024397898
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1190/1.1651454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064141249
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1190/1.1988184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031036942
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1190/1.2837309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002441076
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1190/1.3096615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043828506
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1190/geo2011-0441.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039335499
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1190/geo2013-0319.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064143355
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1190/geo2013-0473.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064143451
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1190/geo2016-0099.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084253491
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1190/geo2016-0364.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084253534
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1190/tle32080892.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004481244
142 rdf:type schema:CreativeWork
143 https://doi.org/10.15625/0866-7187/39/4/10731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092108599
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.45978.37 schema:alternateName Süleyman Demirel University
146 schema:name Department of Geophyisical Engineering, Engineering Faculty, Süleyman Demirel University, 32260, Isparta, Turkey
147 rdf:type schema:Organization
148 https://www.grid.ac/institutes/grid.493130.c schema:alternateName VNU University of Science
149 schema:name Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Vietnam
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...