Newton-like methods with increasing order of convergence and their convergence analysis in Banach space View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-03-01

AUTHORS

Janak Raj Sharma, Ioannis K. Argyros, Deepak Kumar

ABSTRACT

Based on a two-step Newton-like iterative scheme of convergence order p≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \ge 3$$\end{document}, we propose a three-step scheme of convergence order p+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+3$$\end{document}. Furthermore, on the basis of this scheme a generalized q+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q+2$$\end{document}-step scheme with increasing convergence order p+3q(q∈N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+3q\,(q \in \mathbb {N})$$\end{document} is presented. Local convergence, including radius of convergence and uniqueness results of the methods, is presented. Theoretical results are verified through numerical experimentation. The performance is demonstrated by the application of the methods on some nonlinear systems of equations. The numerical results, including the elapsed CPU-time, confirm the accurate and efficient character of proposed techniques. More... »

PAGES

545-561

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40324-018-0150-8

DOI

http://dx.doi.org/10.1007/s40324-018-0150-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101294293


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Sant Longowal Institute of Engineering and Technology, 148106, Longowal, Sangrur, India", 
          "id": "http://www.grid.ac/institutes/grid.444561.6", 
          "name": [
            "Department of Mathematics, Sant Longowal Institute of Engineering and Technology, 148106, Longowal, Sangrur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharma", 
        "givenName": "Janak Raj", 
        "id": "sg:person.014410066715.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014410066715.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA", 
          "id": "http://www.grid.ac/institutes/grid.253592.a", 
          "name": [
            "Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Argyros", 
        "givenName": "Ioannis K.", 
        "id": "sg:person.015707547201.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Sant Longowal Institute of Engineering and Technology, 148106, Longowal, Sangrur, India", 
          "id": "http://www.grid.ac/institutes/grid.444561.6", 
          "name": [
            "Department of Mathematics, Sant Longowal Institute of Engineering and Technology, 148106, Longowal, Sangrur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Deepak", 
        "id": "sg:person.010420170511.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010420170511.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00010-004-2733-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039772729", 
          "https://doi.org/10.1007/s00010-004-2733-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10543-009-0226-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001329581", 
          "https://doi.org/10.1007/s10543-009-0226-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-011-9501-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030552333", 
          "https://doi.org/10.1007/s11075-011-9501-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-016-0163-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013717868", 
          "https://doi.org/10.1007/s11075-016-0163-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-014-9952-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019756640", 
          "https://doi.org/10.1007/s11075-014-9952-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40324-016-0085-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019720106", 
          "https://doi.org/10.1007/s40324-016-0085-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-009-9302-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000709826", 
          "https://doi.org/10.1007/s11075-009-9302-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-012-9585-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043662018", 
          "https://doi.org/10.1007/s11075-012-9585-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40324-015-0047-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040172051", 
          "https://doi.org/10.1007/s40324-015-0047-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02241866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008743953", 
          "https://doi.org/10.1007/bf02241866"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03-01", 
    "datePublishedReg": "2018-03-01", 
    "description": "Based on a two-step Newton-like iterative scheme of convergence order p\u22653\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$p \\ge 3$$\\end{document}, we propose a three-step scheme of convergence order p+3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$p+3$$\\end{document}. Furthermore, on the basis of this scheme a generalized q+2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$q+2$$\\end{document}-step scheme with increasing convergence order p+3q(q\u2208N)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$p+3q\\,(q \\in \\mathbb {N})$$\\end{document} is presented. Local convergence, including radius of convergence and uniqueness results of the methods, is presented. Theoretical results are verified through numerical experimentation. The performance is demonstrated by the application of the methods on some nonlinear systems of equations. The numerical results, including the elapsed CPU-time, confirm the accurate and efficient character of proposed techniques.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40324-018-0150-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1381941", 
        "issn": [
          "2254-3902", 
          "2281-7875"
        ], 
        "name": "SeMA Journal", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "75"
      }
    ], 
    "keywords": [
      "two-step Newton", 
      "scheme", 
      "convergence order", 
      "order", 
      "three-step scheme", 
      "basis", 
      "radius of convergence", 
      "results", 
      "method", 
      "performance", 
      "applications", 
      "system", 
      "numerical results", 
      "technique", 
      "Newton-like methods", 
      "order of convergence", 
      "analysis", 
      "Newton", 
      "iterative scheme", 
      "local convergence", 
      "convergence", 
      "radius", 
      "uniqueness results", 
      "theoretical results", 
      "numerical experimentation", 
      "experimentation", 
      "nonlinear systems", 
      "equations", 
      "efficient character", 
      "character", 
      "convergence analysis", 
      "Banach spaces", 
      "space", 
      "like iterative scheme"
    ], 
    "name": "Newton-like methods with increasing order of convergence and their convergence analysis in Banach space", 
    "pagination": "545-561", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101294293"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40324-018-0150-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40324-018-0150-8", 
      "https://app.dimensions.ai/details/publication/pub.1101294293"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_780.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40324-018-0150-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40324-018-0150-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40324-018-0150-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40324-018-0150-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40324-018-0150-8'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      22 PREDICATES      69 URIs      51 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40324-018-0150-8 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Ne6ca2b71b3a440ab8f7b8a80d3045680
4 schema:citation sg:pub.10.1007/bf02241866
5 sg:pub.10.1007/s00010-004-2733-y
6 sg:pub.10.1007/s10543-009-0226-z
7 sg:pub.10.1007/s11075-009-9302-3
8 sg:pub.10.1007/s11075-011-9501-6
9 sg:pub.10.1007/s11075-012-9585-7
10 sg:pub.10.1007/s11075-014-9952-7
11 sg:pub.10.1007/s11075-016-0163-2
12 sg:pub.10.1007/s40324-015-0047-8
13 sg:pub.10.1007/s40324-016-0085-x
14 schema:datePublished 2018-03-01
15 schema:datePublishedReg 2018-03-01
16 schema:description Based on a two-step Newton-like iterative scheme of convergence order p≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \ge 3$$\end{document}, we propose a three-step scheme of convergence order p+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+3$$\end{document}. Furthermore, on the basis of this scheme a generalized q+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q+2$$\end{document}-step scheme with increasing convergence order p+3q(q∈N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+3q\,(q \in \mathbb {N})$$\end{document} is presented. Local convergence, including radius of convergence and uniqueness results of the methods, is presented. Theoretical results are verified through numerical experimentation. The performance is demonstrated by the application of the methods on some nonlinear systems of equations. The numerical results, including the elapsed CPU-time, confirm the accurate and efficient character of proposed techniques.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N3846983176564c27bd076201bfe12ad2
21 N9f2938b76acd45b6a5d385f1be5eb013
22 sg:journal.1381941
23 schema:keywords Banach spaces
24 Newton
25 Newton-like methods
26 analysis
27 applications
28 basis
29 character
30 convergence
31 convergence analysis
32 convergence order
33 efficient character
34 equations
35 experimentation
36 iterative scheme
37 like iterative scheme
38 local convergence
39 method
40 nonlinear systems
41 numerical experimentation
42 numerical results
43 order
44 order of convergence
45 performance
46 radius
47 radius of convergence
48 results
49 scheme
50 space
51 system
52 technique
53 theoretical results
54 three-step scheme
55 two-step Newton
56 uniqueness results
57 schema:name Newton-like methods with increasing order of convergence and their convergence analysis in Banach space
58 schema:pagination 545-561
59 schema:productId N0e67319bb4cd46b283d99311c13cc7bc
60 N770c5732793143aeb4f1cc7dd846b57e
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101294293
62 https://doi.org/10.1007/s40324-018-0150-8
63 schema:sdDatePublished 2021-11-01T18:34
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N693640258e364c52952074d786059776
66 schema:url https://doi.org/10.1007/s40324-018-0150-8
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N0e67319bb4cd46b283d99311c13cc7bc schema:name doi
71 schema:value 10.1007/s40324-018-0150-8
72 rdf:type schema:PropertyValue
73 N3846983176564c27bd076201bfe12ad2 schema:issueNumber 3
74 rdf:type schema:PublicationIssue
75 N693640258e364c52952074d786059776 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N6b0ad5d351b349a099997d1dae9be7b3 rdf:first sg:person.015707547201.06
78 rdf:rest Na079bf96973a41418631fef1144afb7e
79 N770c5732793143aeb4f1cc7dd846b57e schema:name dimensions_id
80 schema:value pub.1101294293
81 rdf:type schema:PropertyValue
82 N9f2938b76acd45b6a5d385f1be5eb013 schema:volumeNumber 75
83 rdf:type schema:PublicationVolume
84 Na079bf96973a41418631fef1144afb7e rdf:first sg:person.010420170511.42
85 rdf:rest rdf:nil
86 Ne6ca2b71b3a440ab8f7b8a80d3045680 rdf:first sg:person.014410066715.34
87 rdf:rest N6b0ad5d351b349a099997d1dae9be7b3
88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
89 schema:name Mathematical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
92 schema:name Applied Mathematics
93 rdf:type schema:DefinedTerm
94 sg:journal.1381941 schema:issn 2254-3902
95 2281-7875
96 schema:name SeMA Journal
97 schema:publisher Springer Nature
98 rdf:type schema:Periodical
99 sg:person.010420170511.42 schema:affiliation grid-institutes:grid.444561.6
100 schema:familyName Kumar
101 schema:givenName Deepak
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010420170511.42
103 rdf:type schema:Person
104 sg:person.014410066715.34 schema:affiliation grid-institutes:grid.444561.6
105 schema:familyName Sharma
106 schema:givenName Janak Raj
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014410066715.34
108 rdf:type schema:Person
109 sg:person.015707547201.06 schema:affiliation grid-institutes:grid.253592.a
110 schema:familyName Argyros
111 schema:givenName Ioannis K.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06
113 rdf:type schema:Person
114 sg:pub.10.1007/bf02241866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008743953
115 https://doi.org/10.1007/bf02241866
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00010-004-2733-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1039772729
118 https://doi.org/10.1007/s00010-004-2733-y
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s10543-009-0226-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001329581
121 https://doi.org/10.1007/s10543-009-0226-z
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11075-009-9302-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000709826
124 https://doi.org/10.1007/s11075-009-9302-3
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11075-011-9501-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030552333
127 https://doi.org/10.1007/s11075-011-9501-6
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s11075-012-9585-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043662018
130 https://doi.org/10.1007/s11075-012-9585-7
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s11075-014-9952-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019756640
133 https://doi.org/10.1007/s11075-014-9952-7
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s11075-016-0163-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013717868
136 https://doi.org/10.1007/s11075-016-0163-2
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s40324-015-0047-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040172051
139 https://doi.org/10.1007/s40324-015-0047-8
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s40324-016-0085-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019720106
142 https://doi.org/10.1007/s40324-016-0085-x
143 rdf:type schema:CreativeWork
144 grid-institutes:grid.253592.a schema:alternateName Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA
145 schema:name Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA
146 rdf:type schema:Organization
147 grid-institutes:grid.444561.6 schema:alternateName Department of Mathematics, Sant Longowal Institute of Engineering and Technology, 148106, Longowal, Sangrur, India
148 schema:name Department of Mathematics, Sant Longowal Institute of Engineering and Technology, 148106, Longowal, Sangrur, India
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...