Ontology type: schema:ScholarlyArticle
2014-06-24
AUTHORSÁ. Alberto Magreñán, Ioannis K. Argyros
ABSTRACTA new semi-local convergence analysis of the Gauss–Newton method for solving convex composite optimization problems is presented using the concept of quasi-regularity for an initial point. Our convergence analysis is based on a combination of a center-majorant and a majorant function. The results extend the applicability of the Gauss–Newton method under the same computational cost as in earlier studies using a majorant function or Wang’s condition or Lipchitz condition. The special cases and applications include regular starting points, Robinson’s conditions, Smale’s or Wang’s theory. More... »
PAGES37-56
http://scigraph.springernature.com/pub.10.1007/s40324-014-0018-5
DOIhttp://dx.doi.org/10.1007/s40324-014-0018-5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1020141248
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Departamento de TFG/TFM, Universidad Internacional de La Rioja, 26002, Logro\u00f1o, La Rioja, Spain",
"id": "http://www.grid.ac/institutes/grid.13825.3d",
"name": [
"Departamento de TFG/TFM, Universidad Internacional de La Rioja, 26002, Logro\u00f1o, La Rioja, Spain"
],
"type": "Organization"
},
"familyName": "Magre\u00f1\u00e1n",
"givenName": "\u00c1. Alberto",
"id": "sg:person.013576636334.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA",
"id": "http://www.grid.ac/institutes/grid.253592.a",
"name": [
"Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA"
],
"type": "Organization"
},
"familyName": "Argyros",
"givenName": "Ioannis K.",
"id": "sg:person.015707547201.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-662-06409-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043657417",
"https://doi.org/10.1007/978-3-662-06409-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-4984-9_13",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004284301",
"https://doi.org/10.1007/978-1-4612-4984-9_13"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01389446",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050904177",
"https://doi.org/10.1007/bf01389446"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01404880",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048822194",
"https://doi.org/10.1007/bf01404880"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10589-007-9082-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053719030",
"https://doi.org/10.1007/s10589-007-9082-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01585997",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027982337",
"https://doi.org/10.1007/bf01585997"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s101070100249",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015798123",
"https://doi.org/10.1007/s101070100249"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11075-011-9446-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048783623",
"https://doi.org/10.1007/s11075-011-9446-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s12190-008-0140-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005756337",
"https://doi.org/10.1007/s12190-008-0140-6"
],
"type": "CreativeWork"
}
],
"datePublished": "2014-06-24",
"datePublishedReg": "2014-06-24",
"description": "A new semi-local convergence analysis of the Gauss\u2013Newton method for solving convex composite optimization problems is presented using the concept of quasi-regularity for an initial point. Our convergence analysis is based on a combination of a center-majorant and a majorant function. The results extend the applicability of the Gauss\u2013Newton method under the same computational cost as in earlier studies using a majorant function or Wang\u2019s condition or Lipchitz condition. The special cases and applications include regular starting points, Robinson\u2019s conditions, Smale\u2019s or Wang\u2019s theory.",
"genre": "article",
"id": "sg:pub.10.1007/s40324-014-0018-5",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1381941",
"issn": [
"2254-3902",
"2281-7875"
],
"name": "SeMA Journal",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "65"
}
],
"keywords": [
"Gauss-Newton method",
"convergence analysis",
"majorant function",
"convex composite optimization problems",
"semi-local convergence analysis",
"composite optimization problems",
"new semi-local convergence analysis",
"same computational cost",
"Lipchitz condition",
"majorant condition",
"convex optimization",
"Wang condition",
"optimization problem",
"initial point",
"computational cost",
"special case",
"theory",
"Smale",
"Wang theory",
"applicability",
"starting point",
"optimization",
"point",
"problem",
"function",
"conditions",
"applications",
"analysis",
"cases",
"concept",
"results",
"cost",
"earlier studies",
"combination",
"study",
"method"
],
"name": "Expanding the applicability of the Gauss\u2013Newton method for convex optimization under a majorant condition",
"pagination": "37-56",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1020141248"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s40324-014-0018-5"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s40324-014-0018-5",
"https://app.dimensions.ai/details/publication/pub.1020141248"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_618.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s40324-014-0018-5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40324-014-0018-5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40324-014-0018-5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40324-014-0018-5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40324-014-0018-5'
This table displays all metadata directly associated to this object as RDF triples.
140 TRIPLES
22 PREDICATES
70 URIs
53 LITERALS
6 BLANK NODES