On Meromorphic Solutions of Non-linear Difference Equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

Ran-Ran Zhang, Zhi-Bo Huang

ABSTRACT

In this paper, using the theory of linear algebra, we investigate the non-linear difference equation of the following form in the complex plane: f(z)n+p(z)f(z+η)=β1eα1z+β2eα2z+⋯+βseαsz,where n, s are the positive integers, p(z)≢0 is a polynomial and η,β1,…,βs,α1,…,αs are the constants with β1…βsα1…αs≠0, and show that this equation just has meromorphic solutions with hyper-order at least one when n≥2+s. Other cases are also obtained. More... »

PAGES

389-408

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40315-017-0223-1

DOI

http://dx.doi.org/10.1007/s40315-017-0223-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092556873


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Guangdong Institute of Education", 
          "id": "https://www.grid.ac/institutes/grid.440716.0", 
          "name": [
            "Department of Mathematics, Guangdong University of Education, 510303, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Ran-Ran", 
        "id": "sg:person.013652033101.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013652033101.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "South China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.263785.d", 
          "name": [
            "School of Mathematical Sciences, South China Normal University, 510631, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Zhi-Bo", 
        "id": "sg:person.013317631141.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013317631141.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9947-1929-1501494-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003910880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11139-007-9101-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005019404", 
          "https://doi.org/10.1007/s11139-007-9101-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/jlms/jdm073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010020409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00013-008-2648-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011801946", 
          "https://doi.org/10.1007/s00013-008-2648-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2005.07.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018291376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9783110863147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020030886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10114-016-4286-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050724781", 
          "https://doi.org/10.1007/s10114-016-4286-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10114-016-4286-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050724781", 
          "https://doi.org/10.1007/s10114-016-4286-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-2014-05949-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059336097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.11650/tjm.18.2014.3745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063392958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3792/pjaa.86.10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071432817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00009-017-0914-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084748256", 
          "https://doi.org/10.1007/s00009-017-0914-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00009-017-0914-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084748256", 
          "https://doi.org/10.1007/s00009-017-0914-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.11650/twjm/1500406427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090785312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109718314", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-3626-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109718314", 
          "https://doi.org/10.1007/978-94-017-3626-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-3626-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109718314", 
          "https://doi.org/10.1007/978-94-017-3626-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-3626-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109718314", 
          "https://doi.org/10.1007/978-94-017-3626-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "In this paper, using the theory of linear algebra, we investigate the non-linear difference equation of the following form in the complex plane: f(z)n+p(z)f(z+\u03b7)=\u03b21e\u03b11z+\u03b22e\u03b12z+\u22ef+\u03b2se\u03b1sz,where n, s are the positive integers, p(z)\u22620 is a polynomial and \u03b7,\u03b21,\u2026,\u03b2s,\u03b11,\u2026,\u03b1s are the constants with \u03b21\u2026\u03b2s\u03b11\u2026\u03b1s\u22600, and show that this equation just has meromorphic solutions with hyper-order at least one when n\u22652+s. Other cases are also obtained.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40315-017-0223-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136555", 
        "issn": [
          "1617-9447", 
          "2195-3724"
        ], 
        "name": "Computational Methods and Function Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "On Meromorphic Solutions of Non-linear Difference Equations", 
    "pagination": "389-408", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "980583be019077344567e99eb27605edb87db02e623997b39e01f06704f23842"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40315-017-0223-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092556873"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40315-017-0223-1", 
      "https://app.dimensions.ai/details/publication/pub.1092556873"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40315-017-0223-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40315-017-0223-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40315-017-0223-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40315-017-0223-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40315-017-0223-1'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40315-017-0223-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3904ea7a17ca4cc19faf42acddb35ad9
4 schema:citation sg:pub.10.1007/978-94-017-3626-8
5 sg:pub.10.1007/s00009-017-0914-x
6 sg:pub.10.1007/s00013-008-2648-2
7 sg:pub.10.1007/s10114-016-4286-0
8 sg:pub.10.1007/s11139-007-9101-1
9 https://app.dimensions.ai/details/publication/pub.1109718314
10 https://doi.org/10.1016/j.jmaa.2005.07.066
11 https://doi.org/10.1090/s0002-9947-1929-1501494-2
12 https://doi.org/10.1090/s0002-9947-2014-05949-7
13 https://doi.org/10.1112/jlms/jdm073
14 https://doi.org/10.11650/tjm.18.2014.3745
15 https://doi.org/10.11650/twjm/1500406427
16 https://doi.org/10.1515/9783110863147
17 https://doi.org/10.3792/pjaa.86.10
18 schema:datePublished 2018-09
19 schema:datePublishedReg 2018-09-01
20 schema:description In this paper, using the theory of linear algebra, we investigate the non-linear difference equation of the following form in the complex plane: f(z)n+p(z)f(z+η)=β1eα1z+β2eα2z+⋯+βseαsz,where n, s are the positive integers, p(z)≢0 is a polynomial and η,β1,…,βs,α1,…,αs are the constants with β1…βsα1…αs≠0, and show that this equation just has meromorphic solutions with hyper-order at least one when n≥2+s. Other cases are also obtained.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N2779b63840d14ac2bbadd96c141796b3
25 Nbdcaa4ac1fdb4b028fe2402ef1373ac5
26 sg:journal.1136555
27 schema:name On Meromorphic Solutions of Non-linear Difference Equations
28 schema:pagination 389-408
29 schema:productId N51da841841674f2fadb1ba2d49ea5626
30 N8726d24aafa94b0a97b41d436760e13e
31 Nff4bf401cda0495c914962d101540efd
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092556873
33 https://doi.org/10.1007/s40315-017-0223-1
34 schema:sdDatePublished 2019-04-10T20:10
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nd1ecd972dd124239a87d4b96925b64b9
37 schema:url https://link.springer.com/10.1007%2Fs40315-017-0223-1
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N2779b63840d14ac2bbadd96c141796b3 schema:volumeNumber 18
42 rdf:type schema:PublicationVolume
43 N3904ea7a17ca4cc19faf42acddb35ad9 rdf:first sg:person.013652033101.09
44 rdf:rest N74514fc3282645c4a3f686f0944868d1
45 N51da841841674f2fadb1ba2d49ea5626 schema:name readcube_id
46 schema:value 980583be019077344567e99eb27605edb87db02e623997b39e01f06704f23842
47 rdf:type schema:PropertyValue
48 N74514fc3282645c4a3f686f0944868d1 rdf:first sg:person.013317631141.08
49 rdf:rest rdf:nil
50 N8726d24aafa94b0a97b41d436760e13e schema:name doi
51 schema:value 10.1007/s40315-017-0223-1
52 rdf:type schema:PropertyValue
53 Nbdcaa4ac1fdb4b028fe2402ef1373ac5 schema:issueNumber 3
54 rdf:type schema:PublicationIssue
55 Nd1ecd972dd124239a87d4b96925b64b9 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Nff4bf401cda0495c914962d101540efd schema:name dimensions_id
58 schema:value pub.1092556873
59 rdf:type schema:PropertyValue
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
64 schema:name Pure Mathematics
65 rdf:type schema:DefinedTerm
66 sg:journal.1136555 schema:issn 1617-9447
67 2195-3724
68 schema:name Computational Methods and Function Theory
69 rdf:type schema:Periodical
70 sg:person.013317631141.08 schema:affiliation https://www.grid.ac/institutes/grid.263785.d
71 schema:familyName Huang
72 schema:givenName Zhi-Bo
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013317631141.08
74 rdf:type schema:Person
75 sg:person.013652033101.09 schema:affiliation https://www.grid.ac/institutes/grid.440716.0
76 schema:familyName Zhang
77 schema:givenName Ran-Ran
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013652033101.09
79 rdf:type schema:Person
80 sg:pub.10.1007/978-94-017-3626-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109718314
81 https://doi.org/10.1007/978-94-017-3626-8
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/s00009-017-0914-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1084748256
84 https://doi.org/10.1007/s00009-017-0914-x
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/s00013-008-2648-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011801946
87 https://doi.org/10.1007/s00013-008-2648-2
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s10114-016-4286-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050724781
90 https://doi.org/10.1007/s10114-016-4286-0
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s11139-007-9101-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005019404
93 https://doi.org/10.1007/s11139-007-9101-1
94 rdf:type schema:CreativeWork
95 https://app.dimensions.ai/details/publication/pub.1109718314 schema:CreativeWork
96 https://doi.org/10.1016/j.jmaa.2005.07.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018291376
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1090/s0002-9947-1929-1501494-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003910880
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1090/s0002-9947-2014-05949-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059336097
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1112/jlms/jdm073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020409
103 rdf:type schema:CreativeWork
104 https://doi.org/10.11650/tjm.18.2014.3745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063392958
105 rdf:type schema:CreativeWork
106 https://doi.org/10.11650/twjm/1500406427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090785312
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1515/9783110863147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020030886
109 rdf:type schema:CreativeWork
110 https://doi.org/10.3792/pjaa.86.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071432817
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.263785.d schema:alternateName South China Normal University
113 schema:name School of Mathematical Sciences, South China Normal University, 510631, Guangzhou, China
114 rdf:type schema:Organization
115 https://www.grid.ac/institutes/grid.440716.0 schema:alternateName Guangdong Institute of Education
116 schema:name Department of Mathematics, Guangdong University of Education, 510303, Guangzhou, China
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...