A spectral collocation method for nonlinear fractional initial value problems with a variable-order fractional derivative View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-06

AUTHORS

Rian Yan, Minggang Han, Qiang Ma, Xiaohua Ding

ABSTRACT

In this paper, we investigate the initial value problems for a class of nonlinear fractional differential equations involving the variable-order fractional derivative. Our goal is to construct the spectral collocation scheme for the problem and carry out a rigorous error analysis of the proposed method. To reach this target, we first show that the variable-order fractional calculus of non constant functions does not have the properties like the constant order calculus. Second, we study the existence and uniqueness of exact solution for the problem using Banach’s fixed-point theorem and the Gronwall–Bellman lemma. Third, we employ the Legendre–Gauss and Jacobi–Gauss interpolations to conquer the influence of the nonlinear term and the variable-order fractional derivative. Accordingly, we construct the spectral collocation scheme and design the algorithm. We also establish priori error estimates for the proposed scheme in the function spaces L2[0,1] and L∞[0,1]. Finally, numerical results are given to support the theoretical conclusions. More... »

PAGES

66

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40314-019-0835-3

DOI

http://dx.doi.org/10.1007/s40314-019-0835-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112878994


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "Department of Mathematics, Harbin Institute of Technology at Weihai, 264209, Weihai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Rian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "Department of Mathematics, Harbin Institute of Technology at Weihai, 264209, Weihai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Minggang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "Department of Mathematics, Harbin Institute of Technology at Weihai, 264209, Weihai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Qiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "Department of Mathematics, Harbin Institute of Technology at Weihai, 264209, Weihai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Xiaohua", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.aml.2017.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001112612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2011-01390-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001308484", 
          "https://doi.org/10.1140/epjst/e2011-01390-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aml.2016.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003153986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016586905654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012619583", 
          "https://doi.org/10.1023/a:1016586905654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apnum.2005.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015001839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2009.02.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015053312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-016-3079-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023972310", 
          "https://doi.org/10.1007/s11071-016-3079-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-016-3079-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023972310", 
          "https://doi.org/10.1007/s11071-016-3079-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-012-0485-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032550855", 
          "https://doi.org/10.1007/s11071-012-0485-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-0427(00)00557-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036555037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2015.10.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046278629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2010.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047292734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2004.01.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049718243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10915-016-0343-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051737754", 
          "https://doi.org/10.1007/s10915-016-0343-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10915-016-0343-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051737754", 
          "https://doi.org/10.1007/s10915-016-0343-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mcom/3183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059342959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mcom3035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059343031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/120873984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062869347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/13093933x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062871340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/141001299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062873170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/16m1059278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062874463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13398-017-0389-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084037122", 
          "https://doi.org/10.1007/s13398-017-0389-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13398-017-0389-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084037122", 
          "https://doi.org/10.1007/s13398-017-0389-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/fi-2017-1493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084430184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2017.03.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084524485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/fca-2017-0053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091135307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10915-017-0616-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093075435", 
          "https://doi.org/10.1007/s10915-017-0616-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10915-017-0622-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099711506", 
          "https://doi.org/10.1007/s10915-017-0622-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2018.02.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101224462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40314-018-0604-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101379180", 
          "https://doi.org/10.1007/s40314-018-0604-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40314-018-0604-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101379180", 
          "https://doi.org/10.1007/s40314-018-0604-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40314-018-0604-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101379180", 
          "https://doi.org/10.1007/s40314-018-0604-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/ijnsns-2016-0094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101658368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2018.04.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104254909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2018.04.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104254909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10444-018-9645-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109778791", 
          "https://doi.org/10.1007/s10444-018-9645-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-06", 
    "datePublishedReg": "2019-06-01", 
    "description": "In this paper, we investigate the initial value problems for a class of nonlinear fractional differential equations involving the variable-order fractional derivative. Our goal is to construct the spectral collocation scheme for the problem and carry out a rigorous error analysis of the proposed method. To reach this target, we first show that the variable-order fractional calculus of non constant functions does not have the properties like the constant order calculus. Second, we study the existence and uniqueness of exact solution for the problem using Banach\u2019s fixed-point theorem and the Gronwall\u2013Bellman lemma. Third, we employ the Legendre\u2013Gauss and Jacobi\u2013Gauss interpolations to conquer the influence of the nonlinear term and the variable-order fractional derivative. Accordingly, we construct the spectral collocation scheme and design the algorithm. We also establish priori error estimates for the proposed scheme in the function spaces L2[0,1] and L\u221e[0,1]. Finally, numerical results are given to support the theoretical conclusions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40314-019-0835-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1284620", 
        "issn": [
          "2238-3603", 
          "0101-8205"
        ], 
        "name": "Computational and Applied Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "A spectral collocation method for nonlinear fractional initial value problems with a variable-order fractional derivative", 
    "pagination": "66", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b4a5bda5d7ef216eb8f65400d8d7f1fcc9516e8e7489a36a987e803fb152078a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40314-019-0835-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112878994"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40314-019-0835-3", 
      "https://app.dimensions.ai/details/publication/pub.1112878994"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87109_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40314-019-0835-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0835-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0835-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0835-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0835-3'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40314-019-0835-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N767e6dbd2c1b46c28c6b549f08bdb9c9
4 schema:citation sg:pub.10.1007/s10444-018-9645-1
5 sg:pub.10.1007/s10915-016-0343-1
6 sg:pub.10.1007/s10915-017-0616-3
7 sg:pub.10.1007/s10915-017-0622-5
8 sg:pub.10.1007/s11071-012-0485-0
9 sg:pub.10.1007/s11071-016-3079-4
10 sg:pub.10.1007/s13398-017-0389-4
11 sg:pub.10.1007/s40314-018-0604-8
12 sg:pub.10.1023/a:1016586905654
13 sg:pub.10.1140/epjst/e2011-01390-6
14 https://doi.org/10.1016/j.amc.2009.02.047
15 https://doi.org/10.1016/j.aml.2016.05.012
16 https://doi.org/10.1016/j.aml.2017.01.001
17 https://doi.org/10.1016/j.apnum.2005.03.003
18 https://doi.org/10.1016/j.cam.2004.01.033
19 https://doi.org/10.1016/j.cam.2018.02.029
20 https://doi.org/10.1016/j.chaos.2017.03.065
21 https://doi.org/10.1016/j.chaos.2018.04.028
22 https://doi.org/10.1016/j.cnsns.2015.10.027
23 https://doi.org/10.1016/j.sigpro.2010.04.006
24 https://doi.org/10.1016/s0377-0427(00)00557-4
25 https://doi.org/10.1090/mcom/3183
26 https://doi.org/10.1090/mcom3035
27 https://doi.org/10.1137/120873984
28 https://doi.org/10.1137/13093933x
29 https://doi.org/10.1137/141001299
30 https://doi.org/10.1137/16m1059278
31 https://doi.org/10.1515/fca-2017-0053
32 https://doi.org/10.1515/ijnsns-2016-0094
33 https://doi.org/10.3233/fi-2017-1493
34 schema:datePublished 2019-06
35 schema:datePublishedReg 2019-06-01
36 schema:description In this paper, we investigate the initial value problems for a class of nonlinear fractional differential equations involving the variable-order fractional derivative. Our goal is to construct the spectral collocation scheme for the problem and carry out a rigorous error analysis of the proposed method. To reach this target, we first show that the variable-order fractional calculus of non constant functions does not have the properties like the constant order calculus. Second, we study the existence and uniqueness of exact solution for the problem using Banach’s fixed-point theorem and the Gronwall–Bellman lemma. Third, we employ the Legendre–Gauss and Jacobi–Gauss interpolations to conquer the influence of the nonlinear term and the variable-order fractional derivative. Accordingly, we construct the spectral collocation scheme and design the algorithm. We also establish priori error estimates for the proposed scheme in the function spaces L2[0,1] and L∞[0,1]. Finally, numerical results are given to support the theoretical conclusions.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N057cc609fc1b45e8ade7fa8d887a21ce
41 N7cd39e5c2b934e49a2374bf5ab658c7e
42 sg:journal.1284620
43 schema:name A spectral collocation method for nonlinear fractional initial value problems with a variable-order fractional derivative
44 schema:pagination 66
45 schema:productId N391e3efa222e49bc847b707e07f1f175
46 N56ecd2e24539409c8d36ae64d3e39127
47 N740f04da3445490ba548b4be1bb20772
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112878994
49 https://doi.org/10.1007/s40314-019-0835-3
50 schema:sdDatePublished 2019-04-11T12:26
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N7d1306f98fdc491f86fd0e8a5475e84b
53 schema:url https://link.springer.com/10.1007%2Fs40314-019-0835-3
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N057cc609fc1b45e8ade7fa8d887a21ce schema:issueNumber 2
58 rdf:type schema:PublicationIssue
59 N375333c4c0a14252bed909e06ca165ba schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
60 schema:familyName Ding
61 schema:givenName Xiaohua
62 rdf:type schema:Person
63 N391e3efa222e49bc847b707e07f1f175 schema:name readcube_id
64 schema:value b4a5bda5d7ef216eb8f65400d8d7f1fcc9516e8e7489a36a987e803fb152078a
65 rdf:type schema:PropertyValue
66 N3aabd0b525bd4698a0bb63934c35d046 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
67 schema:familyName Ma
68 schema:givenName Qiang
69 rdf:type schema:Person
70 N56ecd2e24539409c8d36ae64d3e39127 schema:name doi
71 schema:value 10.1007/s40314-019-0835-3
72 rdf:type schema:PropertyValue
73 N6c36a970b721494fb6d85076d20efd03 rdf:first N375333c4c0a14252bed909e06ca165ba
74 rdf:rest rdf:nil
75 N740f04da3445490ba548b4be1bb20772 schema:name dimensions_id
76 schema:value pub.1112878994
77 rdf:type schema:PropertyValue
78 N767e6dbd2c1b46c28c6b549f08bdb9c9 rdf:first N94397fb7aa3b491cae9e3282ae3695b5
79 rdf:rest Ne45105721e654ce7b8361fe6568e2108
80 N7cd39e5c2b934e49a2374bf5ab658c7e schema:volumeNumber 38
81 rdf:type schema:PublicationVolume
82 N7d1306f98fdc491f86fd0e8a5475e84b schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N94397fb7aa3b491cae9e3282ae3695b5 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
85 schema:familyName Yan
86 schema:givenName Rian
87 rdf:type schema:Person
88 Nbf783acf2a7c401da81d37cffb2365e4 rdf:first N3aabd0b525bd4698a0bb63934c35d046
89 rdf:rest N6c36a970b721494fb6d85076d20efd03
90 Nd234a8fbb43a44faa81c32fbfb3f19ee schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
91 schema:familyName Han
92 schema:givenName Minggang
93 rdf:type schema:Person
94 Ne45105721e654ce7b8361fe6568e2108 rdf:first Nd234a8fbb43a44faa81c32fbfb3f19ee
95 rdf:rest Nbf783acf2a7c401da81d37cffb2365e4
96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
97 schema:name Mathematical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
100 schema:name Pure Mathematics
101 rdf:type schema:DefinedTerm
102 sg:journal.1284620 schema:issn 0101-8205
103 2238-3603
104 schema:name Computational and Applied Mathematics
105 rdf:type schema:Periodical
106 sg:pub.10.1007/s10444-018-9645-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109778791
107 https://doi.org/10.1007/s10444-018-9645-1
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s10915-016-0343-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051737754
110 https://doi.org/10.1007/s10915-016-0343-1
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s10915-017-0616-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093075435
113 https://doi.org/10.1007/s10915-017-0616-3
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s10915-017-0622-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099711506
116 https://doi.org/10.1007/s10915-017-0622-5
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s11071-012-0485-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032550855
119 https://doi.org/10.1007/s11071-012-0485-0
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s11071-016-3079-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023972310
122 https://doi.org/10.1007/s11071-016-3079-4
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s13398-017-0389-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084037122
125 https://doi.org/10.1007/s13398-017-0389-4
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s40314-018-0604-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101379180
128 https://doi.org/10.1007/s40314-018-0604-8
129 rdf:type schema:CreativeWork
130 sg:pub.10.1023/a:1016586905654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012619583
131 https://doi.org/10.1023/a:1016586905654
132 rdf:type schema:CreativeWork
133 sg:pub.10.1140/epjst/e2011-01390-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001308484
134 https://doi.org/10.1140/epjst/e2011-01390-6
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.amc.2009.02.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015053312
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.aml.2016.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003153986
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.aml.2017.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001112612
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.apnum.2005.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015001839
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.cam.2004.01.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049718243
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.cam.2018.02.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101224462
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.chaos.2017.03.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084524485
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.chaos.2018.04.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104254909
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.cnsns.2015.10.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046278629
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.sigpro.2010.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047292734
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0377-0427(00)00557-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036555037
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1090/mcom/3183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059342959
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1090/mcom3035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343031
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1137/120873984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062869347
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1137/13093933x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062871340
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1137/141001299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062873170
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1137/16m1059278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062874463
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1515/fca-2017-0053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091135307
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1515/ijnsns-2016-0094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101658368
173 rdf:type schema:CreativeWork
174 https://doi.org/10.3233/fi-2017-1493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084430184
175 rdf:type schema:CreativeWork
176 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
177 schema:name Department of Mathematics, Harbin Institute of Technology at Weihai, 264209, Weihai, People’s Republic of China
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...