Ontology type: schema:ScholarlyArticle
2019-06
AUTHORSAli Abdi
ABSTRACTGeneral linear methods are well-known as a large family of methods for the numerical solution of Volterra integral equations of the second kind. This paper is concerned with the construction of such methods with a large region of order p and high stage order q=p with a large region of absolute stability. Some numerical results are presented which indicate the effectiveness of the proposed schemes. More... »
PAGES52
http://scigraph.springernature.com/pub.10.1007/s40314-019-0806-8
DOIhttp://dx.doi.org/10.1007/s40314-019-0806-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1112541231
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Tabriz",
"id": "https://www.grid.ac/institutes/grid.412831.d",
"name": [
"Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran"
],
"type": "Organization"
},
"familyName": "Abdi",
"givenName": "Ali",
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/j.amc.2008.07.026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003860357"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cam.2010.01.023",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005447454"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.apnum.2015.09.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006298913"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01397087",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008781315",
"https://doi.org/10.1007/bf01397087"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.apnum.2009.01.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012987558"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cam.2016.02.054",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021713004"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10543-007-0122-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028915063",
"https://doi.org/10.1007/s10543-007-0122-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10543-007-0122-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028915063",
"https://doi.org/10.1007/s10543-007-0122-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0025-5718-1966-0189251-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029403300"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0898-1221(01)00278-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030329161"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.apnum.2013.08.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031590289"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11075-010-9420-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032254445",
"https://doi.org/10.1007/s11075-010-9420-y"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cam.2015.07.028",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034658665"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.apnum.2012.03.007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036589447"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01398253",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037002810",
"https://doi.org/10.1007/bf01398253"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01398253",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037002810",
"https://doi.org/10.1007/bf01398253"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.amc.2011.11.088",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042560377"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.apnum.2015.04.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043123873"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01395951",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044268193",
"https://doi.org/10.1007/bf01395951"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10543-011-0357-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051922878",
"https://doi.org/10.1007/s10543-011-0357-x"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.apnum.2011.06.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052571569"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/imamat/20.4.415",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059684675"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/040607058",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062844968"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/0715025",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062852497"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/0908068",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062857115"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/120904020",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062870286"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/s0036144502417715",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062877798"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3846/13926292.2012.655789",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1071466187"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10915-017-0608-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092905423",
"https://doi.org/10.1007/s10915-017-0608-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/1.9781611970852",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098556255"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/cbo9780511543234",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098787281"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/17m114371x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105158013"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10092-018-0270-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105472790",
"https://doi.org/10.1007/s10092-018-0270-7"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/9781119121534",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107026912"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-06",
"datePublishedReg": "2019-06-01",
"description": "General linear methods are well-known as a large family of methods for the numerical solution of Volterra integral equations of the second kind. This paper is concerned with the construction of such methods with a large region of order p and high stage order q=p with a large region of absolute stability. Some numerical results are presented which indicate the effectiveness of the proposed schemes.",
"genre": "research_article",
"id": "sg:pub.10.1007/s40314-019-0806-8",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1284620",
"issn": [
"2238-3603",
"0101-8205"
],
"name": "Computational and Applied Mathematics",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "38"
}
],
"name": "General linear methods with large stability regions for Volterra integral equations",
"pagination": "52",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"26a00810901ffd64b8aea704a7afd9d7c4888f78a1407ff16aef7314fe423285"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s40314-019-0806-8"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1112541231"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s40314-019-0806-8",
"https://app.dimensions.ai/details/publication/pub.1112541231"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T10:59",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60335_00000004.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs40314-019-0806-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0806-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0806-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0806-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0806-8'
This table displays all metadata directly associated to this object as RDF triples.
164 TRIPLES
21 PREDICATES
59 URIs
19 LITERALS
7 BLANK NODES