Graph-theoretic approach to synchronizing delayed coupled systems on networks via periodically intermittent control View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-06

AUTHORS

Beibei Guo, Jianxin Zhang, Yu Xiao

ABSTRACT

This paper investigates the problem of inner exponential synchronization (IES) for delayed coupled systems on networks (DCSNs) via periodically intermittent control. Both internal time-varying delay and coupling time-varying delay are all taken into account. By combining graph theory with Lyapunov method, some sufficient criteria are derived to ensure DCSNs under periodically intermittent control can be inner exponentially synchronized. Furthermore, IES of delayed coupled oscillators on a network is studied to verify the theoretical results. Finally, a numerical example is provided to illustrate the feasibility of our analytical results. More... »

PAGES

39

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40314-019-0805-9

DOI

http://dx.doi.org/10.1007/s40314-019-0805-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112541230


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "Department of Mathematics, Harbin Institute of Technology, 150001, Harbin, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Beibei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "Department of Mathematics, Harbin Institute of Technology, 150001, Harbin, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Jianxin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "Department of Mathematics, Harbin Institute of Technology, 150001, Harbin, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Yu", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.physleta.2009.07.081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002377781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2012.04.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004688566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005249327", 
          "https://doi.org/10.1038/35065725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005249327", 
          "https://doi.org/10.1038/35065725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2010.05.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006795975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-0779(99)00051-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008073138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00036811.2016.1178240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011925025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012633184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012633184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012633184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012633184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-015-2310-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015883356", 
          "https://doi.org/10.1007/s11071-015-2310-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2007.07.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019378876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2014.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021345800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021581496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024063667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nonrwa.2012.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025024791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2013.11.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027788277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2012.10.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033417057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jde.2009.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033626039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.87.925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034261529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.87.925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034261529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(00)00112-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040102845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2010.10.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042757917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nonrwa.2009.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043666849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2014.10.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045198667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.08.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046052551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2016.06.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047571226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11424-016-5060-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047602493", 
          "https://doi.org/10.1007/s11424-016-5060-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11424-016-5060-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047602493", 
          "https://doi.org/10.1007/s11424-016-5060-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nahs.2014.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048680357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2803894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057868799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3071933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057909478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3671609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057996673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/22/3/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059109871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/23/10/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059109939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/23/10/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059109939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2013.2244330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061567623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2009.2039803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2016.2546962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061719168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1126902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062453742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/dcdsb.2016.21.253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071737350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2017.01.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074237539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nahs.2017.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085606618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2017.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085707387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-017-1261-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091244591", 
          "https://doi.org/10.1186/s13662-017-1261-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2017.10.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092649986"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-06", 
    "datePublishedReg": "2019-06-01", 
    "description": "This paper investigates the problem of inner exponential synchronization (IES) for delayed coupled systems on networks (DCSNs) via periodically intermittent control. Both internal time-varying delay and coupling time-varying delay are all taken into account. By combining graph theory with Lyapunov method, some sufficient criteria are derived to ensure DCSNs under periodically intermittent control can be inner exponentially synchronized. Furthermore, IES of delayed coupled oscillators on a network is studied to verify the theoretical results. Finally, a numerical example is provided to illustrate the feasibility of our analytical results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40314-019-0805-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1284620", 
        "issn": [
          "2238-3603", 
          "0101-8205"
        ], 
        "name": "Computational and Applied Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "Graph-theoretic approach to synchronizing delayed coupled systems on networks via periodically intermittent control", 
    "pagination": "39", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "91ef7cc7034ec139d356e6e43dc94616433fa401f6d7f27e549db68208fca584"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40314-019-0805-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112541230"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40314-019-0805-9", 
      "https://app.dimensions.ai/details/publication/pub.1112541230"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60334_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40314-019-0805-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0805-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0805-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0805-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0805-9'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      67 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40314-019-0805-9 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N4a785cefa3c6447ab67b86d5afc1170c
4 schema:citation sg:pub.10.1007/s11071-015-2310-z
5 sg:pub.10.1007/s11424-016-5060-1
6 sg:pub.10.1038/35065725
7 sg:pub.10.1186/s13662-017-1261-8
8 https://doi.org/10.1016/j.amc.2016.06.030
9 https://doi.org/10.1016/j.amc.2017.05.008
10 https://doi.org/10.1016/j.amc.2017.10.038
11 https://doi.org/10.1016/j.apm.2012.10.032
12 https://doi.org/10.1016/j.automatica.2010.10.041
13 https://doi.org/10.1016/j.chaos.2007.07.067
14 https://doi.org/10.1016/j.cnsns.2010.05.025
15 https://doi.org/10.1016/j.cnsns.2014.10.029
16 https://doi.org/10.1016/j.jde.2009.09.003
17 https://doi.org/10.1016/j.nahs.2014.07.003
18 https://doi.org/10.1016/j.nahs.2017.04.006
19 https://doi.org/10.1016/j.neucom.2012.04.027
20 https://doi.org/10.1016/j.neucom.2013.11.053
21 https://doi.org/10.1016/j.neucom.2014.01.014
22 https://doi.org/10.1016/j.neucom.2015.08.063
23 https://doi.org/10.1016/j.neucom.2015.11.011
24 https://doi.org/10.1016/j.neucom.2016.09.004
25 https://doi.org/10.1016/j.neucom.2017.01.035
26 https://doi.org/10.1016/j.neunet.2014.03.009
27 https://doi.org/10.1016/j.nonrwa.2009.04.020
28 https://doi.org/10.1016/j.nonrwa.2012.08.005
29 https://doi.org/10.1016/j.physleta.2009.07.081
30 https://doi.org/10.1016/s0167-2789(00)00112-3
31 https://doi.org/10.1016/s0960-0779(99)00051-x
32 https://doi.org/10.1063/1.2803894
33 https://doi.org/10.1063/1.3071933
34 https://doi.org/10.1063/1.3671609
35 https://doi.org/10.1080/00036811.2016.1178240
36 https://doi.org/10.1088/0951-7715/22/3/004
37 https://doi.org/10.1088/0951-7715/23/10/002
38 https://doi.org/10.1103/revmodphys.87.925
39 https://doi.org/10.1109/tcsi.2013.2244330
40 https://doi.org/10.1109/tnn.2009.2039803
41 https://doi.org/10.1109/tnnls.2016.2546962
42 https://doi.org/10.1126/science.1126902
43 https://doi.org/10.3934/dcdsb.2016.21.253
44 schema:datePublished 2019-06
45 schema:datePublishedReg 2019-06-01
46 schema:description This paper investigates the problem of inner exponential synchronization (IES) for delayed coupled systems on networks (DCSNs) via periodically intermittent control. Both internal time-varying delay and coupling time-varying delay are all taken into account. By combining graph theory with Lyapunov method, some sufficient criteria are derived to ensure DCSNs under periodically intermittent control can be inner exponentially synchronized. Furthermore, IES of delayed coupled oscillators on a network is studied to verify the theoretical results. Finally, a numerical example is provided to illustrate the feasibility of our analytical results.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf Nd18a5ef1dcd74216aa720c2406e12ecd
51 Ne539702db46848ef9425c6dc60d4998d
52 sg:journal.1284620
53 schema:name Graph-theoretic approach to synchronizing delayed coupled systems on networks via periodically intermittent control
54 schema:pagination 39
55 schema:productId Nbf595bdfc4cb41bfbd2ed479aabc9fa4
56 Nc549829439f943aeb7057cb444af336e
57 Nc72dbdec82104f96948aab2952a0117c
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112541230
59 https://doi.org/10.1007/s40314-019-0805-9
60 schema:sdDatePublished 2019-04-11T10:59
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N8c666d4fdca249a0a8608b3a1ea4297d
63 schema:url https://link.springer.com/10.1007%2Fs40314-019-0805-9
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N06519438ec2e4ff1b2d4a0173a295b6c schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
68 schema:familyName Guo
69 schema:givenName Beibei
70 rdf:type schema:Person
71 N382e5e24e1b14f459506a1e9ee35478d rdf:first N65a6bb28913044cc82961b21de2fa6cd
72 rdf:rest Nd3fe88807f85497e8ec2329b08922fbb
73 N4a785cefa3c6447ab67b86d5afc1170c rdf:first N06519438ec2e4ff1b2d4a0173a295b6c
74 rdf:rest N382e5e24e1b14f459506a1e9ee35478d
75 N65a6bb28913044cc82961b21de2fa6cd schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
76 schema:familyName Zhang
77 schema:givenName Jianxin
78 rdf:type schema:Person
79 N8c666d4fdca249a0a8608b3a1ea4297d schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N8d28b132c4d341fbbd026e34e6258777 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
82 schema:familyName Xiao
83 schema:givenName Yu
84 rdf:type schema:Person
85 Nbf595bdfc4cb41bfbd2ed479aabc9fa4 schema:name readcube_id
86 schema:value 91ef7cc7034ec139d356e6e43dc94616433fa401f6d7f27e549db68208fca584
87 rdf:type schema:PropertyValue
88 Nc549829439f943aeb7057cb444af336e schema:name dimensions_id
89 schema:value pub.1112541230
90 rdf:type schema:PropertyValue
91 Nc72dbdec82104f96948aab2952a0117c schema:name doi
92 schema:value 10.1007/s40314-019-0805-9
93 rdf:type schema:PropertyValue
94 Nd18a5ef1dcd74216aa720c2406e12ecd schema:volumeNumber 38
95 rdf:type schema:PublicationVolume
96 Nd3fe88807f85497e8ec2329b08922fbb rdf:first N8d28b132c4d341fbbd026e34e6258777
97 rdf:rest rdf:nil
98 Ne539702db46848ef9425c6dc60d4998d schema:issueNumber 2
99 rdf:type schema:PublicationIssue
100 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
101 schema:name Information and Computing Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
104 schema:name Computation Theory and Mathematics
105 rdf:type schema:DefinedTerm
106 sg:journal.1284620 schema:issn 0101-8205
107 2238-3603
108 schema:name Computational and Applied Mathematics
109 rdf:type schema:Periodical
110 sg:pub.10.1007/s11071-015-2310-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1015883356
111 https://doi.org/10.1007/s11071-015-2310-z
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11424-016-5060-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047602493
114 https://doi.org/10.1007/s11424-016-5060-1
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/35065725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005249327
117 https://doi.org/10.1038/35065725
118 rdf:type schema:CreativeWork
119 sg:pub.10.1186/s13662-017-1261-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091244591
120 https://doi.org/10.1186/s13662-017-1261-8
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.amc.2016.06.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047571226
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.amc.2017.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085707387
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.amc.2017.10.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092649986
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.apm.2012.10.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033417057
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.automatica.2010.10.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042757917
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.chaos.2007.07.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019378876
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.cnsns.2010.05.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006795975
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.cnsns.2014.10.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045198667
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.jde.2009.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033626039
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.nahs.2014.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048680357
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.nahs.2017.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085606618
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.neucom.2012.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004688566
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.neucom.2013.11.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027788277
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.neucom.2014.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024063667
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.neucom.2015.08.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046052551
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.neucom.2015.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012633184
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.neucom.2016.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021581496
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.neucom.2017.01.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074237539
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.neunet.2014.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021345800
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.nonrwa.2009.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043666849
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.nonrwa.2012.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025024791
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.physleta.2009.07.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377781
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s0167-2789(00)00112-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040102845
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0960-0779(99)00051-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008073138
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1063/1.2803894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057868799
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1063/1.3071933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057909478
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1063/1.3671609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057996673
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1080/00036811.2016.1178240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011925025
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1088/0951-7715/22/3/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059109871
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1088/0951-7715/23/10/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059109939
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/revmodphys.87.925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034261529
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/tcsi.2013.2244330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061567623
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/tnn.2009.2039803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717666
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/tnnls.2016.2546962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061719168
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1126/science.1126902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062453742
191 rdf:type schema:CreativeWork
192 https://doi.org/10.3934/dcdsb.2016.21.253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071737350
193 rdf:type schema:CreativeWork
194 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
195 schema:name Department of Mathematics, Harbin Institute of Technology, 150001, Harbin, People’s Republic of China
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...