Some properties and convergence theorems for fuzzy-valued Kluvánek–Lewis integrals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-06

AUTHORS

Cai-Li Zhou, Jun-Hua Li, Xin Chen

ABSTRACT

In this paper, we first introduce a new fuzzy-valued integral of scalar-valued functions with respect to a fuzzy-valued measure with some natural properties. Then we prove Vitali type convergence theorem and dominated convergence theorem for this kind of integral.

PAGES

47

Journal

TITLE

Computational and Applied Mathematics

ISSUE

2

VOLUME

38

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40314-019-0797-5

DOI

http://dx.doi.org/10.1007/s40314-019-0797-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112541223


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hebei University", 
          "id": "https://www.grid.ac/institutes/grid.256885.4", 
          "name": [
            "Hebei Key Laboratory of Machine Learning and Computational Intelligence, College of Mathematics and Information Science, Hebei University, 071002, Baoding, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Cai-Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebei University", 
          "id": "https://www.grid.ac/institutes/grid.256885.4", 
          "name": [
            "Hebei Key Laboratory of Machine Learning and Computational Intelligence, College of Mathematics and Information Science, Hebei University, 071002, Baoding, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jun-Hua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebei University", 
          "id": "https://www.grid.ac/institutes/grid.256885.4", 
          "name": [
            "College of Mathematics and Information Science, Hebei University, 071002, Baoding, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Xin", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jmaa.2000.6976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003340921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmaa.2000.6976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003340921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0047-259x(85)90078-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004390283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2013.05.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006701824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0047-259x(85)90079-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009257885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spl.2012.02.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010533437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0114(98)00468-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011297079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0047-259x(78)90022-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011674785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/260238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023498855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(96)84616-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026575722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/ifs-151650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028206841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4134/ckms.2010.25.1.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036010612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1992-1091184-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036673598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2014.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039375532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(94)90303-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041051543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(94)90303-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041051543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2010.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041784786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/576134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052767526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1955-032-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072263995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2017.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091283517"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-06", 
    "datePublishedReg": "2019-06-01", 
    "description": "In this paper, we first introduce a new fuzzy-valued integral of scalar-valued functions with respect to a fuzzy-valued measure with some natural properties. Then we prove Vitali type convergence theorem and dominated convergence theorem for this kind of integral.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40314-019-0797-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1284620", 
        "issn": [
          "2238-3603", 
          "0101-8205"
        ], 
        "name": "Computational and Applied Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "Some properties and convergence theorems for fuzzy-valued Kluv\u00e1nek\u2013Lewis integrals", 
    "pagination": "47", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7b6da946ebbcc47a8aa54cd034911a526a23d4cccaa0bb1c0b3778b15e09e9e0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40314-019-0797-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112541223"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40314-019-0797-5", 
      "https://app.dimensions.ai/details/publication/pub.1112541223"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60357_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40314-019-0797-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0797-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0797-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0797-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0797-5'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      20 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40314-019-0797-5 schema:author Ne97ab99299064a90a67919eaf6f21ebf
2 schema:citation https://doi.org/10.1006/jmaa.2000.6976
3 https://doi.org/10.1016/0047-259x(78)90022-2
4 https://doi.org/10.1016/0047-259x(85)90078-8
5 https://doi.org/10.1016/0047-259x(85)90079-x
6 https://doi.org/10.1016/0165-0114(94)90303-4
7 https://doi.org/10.1016/0165-0114(96)84616-1
8 https://doi.org/10.1016/j.amc.2013.05.040
9 https://doi.org/10.1016/j.cam.2010.01.016
10 https://doi.org/10.1016/j.fss.2014.09.019
11 https://doi.org/10.1016/j.fss.2017.08.003
12 https://doi.org/10.1016/j.spl.2012.02.021
13 https://doi.org/10.1016/s0165-0114(98)00468-0
14 https://doi.org/10.1090/s0002-9939-1992-1091184-9
15 https://doi.org/10.1155/2015/260238
16 https://doi.org/10.1155/2015/576134
17 https://doi.org/10.3233/ifs-151650
18 https://doi.org/10.4134/ckms.2010.25.1.037
19 https://doi.org/10.4153/cjm-1955-032-1
20 schema:datePublished 2019-06
21 schema:datePublishedReg 2019-06-01
22 schema:description In this paper, we first introduce a new fuzzy-valued integral of scalar-valued functions with respect to a fuzzy-valued measure with some natural properties. Then we prove Vitali type convergence theorem and dominated convergence theorem for this kind of integral.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N41c4b0ff61f147dfb14bcc141461a8c8
27 N8f7ddc559f63410eae30cec9e58cc29f
28 sg:journal.1284620
29 schema:name Some properties and convergence theorems for fuzzy-valued Kluvánek–Lewis integrals
30 schema:pagination 47
31 schema:productId N05fb92ace9e842fa985ebe73f3e4f694
32 Na8002dc6e56a410bb370e6503c1ec0e6
33 Na85a7ccd8eb04476a889b4f486b5c421
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112541223
35 https://doi.org/10.1007/s40314-019-0797-5
36 schema:sdDatePublished 2019-04-11T11:04
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Naeef94f8ff284b9c88b9812a21aba547
39 schema:url https://link.springer.com/10.1007%2Fs40314-019-0797-5
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N05fb92ace9e842fa985ebe73f3e4f694 schema:name doi
44 schema:value 10.1007/s40314-019-0797-5
45 rdf:type schema:PropertyValue
46 N41c4b0ff61f147dfb14bcc141461a8c8 schema:volumeNumber 38
47 rdf:type schema:PublicationVolume
48 N6006017bda6440b7adfe3fbfc6860ccf schema:affiliation https://www.grid.ac/institutes/grid.256885.4
49 schema:familyName Chen
50 schema:givenName Xin
51 rdf:type schema:Person
52 N824f9fe95ab449e48241b5ef5d6406d6 rdf:first N6006017bda6440b7adfe3fbfc6860ccf
53 rdf:rest rdf:nil
54 N8f7ddc559f63410eae30cec9e58cc29f schema:issueNumber 2
55 rdf:type schema:PublicationIssue
56 Na2fd97561fd1431786f7b101f1ff8f73 rdf:first Nb6adacddf9f44fe2b88d579ba4241d8c
57 rdf:rest N824f9fe95ab449e48241b5ef5d6406d6
58 Na8002dc6e56a410bb370e6503c1ec0e6 schema:name readcube_id
59 schema:value 7b6da946ebbcc47a8aa54cd034911a526a23d4cccaa0bb1c0b3778b15e09e9e0
60 rdf:type schema:PropertyValue
61 Na85a7ccd8eb04476a889b4f486b5c421 schema:name dimensions_id
62 schema:value pub.1112541223
63 rdf:type schema:PropertyValue
64 Naeef94f8ff284b9c88b9812a21aba547 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nb6adacddf9f44fe2b88d579ba4241d8c schema:affiliation https://www.grid.ac/institutes/grid.256885.4
67 schema:familyName Li
68 schema:givenName Jun-Hua
69 rdf:type schema:Person
70 Ne97ab99299064a90a67919eaf6f21ebf rdf:first Nf2b22a93577c45daa7c3d7368c50bd21
71 rdf:rest Na2fd97561fd1431786f7b101f1ff8f73
72 Nf2b22a93577c45daa7c3d7368c50bd21 schema:affiliation https://www.grid.ac/institutes/grid.256885.4
73 schema:familyName Zhou
74 schema:givenName Cai-Li
75 rdf:type schema:Person
76 sg:journal.1284620 schema:issn 0101-8205
77 2238-3603
78 schema:name Computational and Applied Mathematics
79 rdf:type schema:Periodical
80 https://doi.org/10.1006/jmaa.2000.6976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003340921
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/0047-259x(78)90022-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011674785
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0047-259x(85)90078-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004390283
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0047-259x(85)90079-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009257885
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0165-0114(94)90303-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041051543
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0165-0114(96)84616-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026575722
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.amc.2013.05.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006701824
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.cam.2010.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041784786
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.fss.2014.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039375532
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.fss.2017.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091283517
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.spl.2012.02.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010533437
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/s0165-0114(98)00468-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011297079
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1090/s0002-9939-1992-1091184-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036673598
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1155/2015/260238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023498855
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1155/2015/576134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052767526
109 rdf:type schema:CreativeWork
110 https://doi.org/10.3233/ifs-151650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028206841
111 rdf:type schema:CreativeWork
112 https://doi.org/10.4134/ckms.2010.25.1.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036010612
113 rdf:type schema:CreativeWork
114 https://doi.org/10.4153/cjm-1955-032-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072263995
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.256885.4 schema:alternateName Hebei University
117 schema:name College of Mathematics and Information Science, Hebei University, 071002, Baoding, People’s Republic of China
118 Hebei Key Laboratory of Machine Learning and Computational Intelligence, College of Mathematics and Information Science, Hebei University, 071002, Baoding, People’s Republic of China
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...