Some properties and convergence theorems for fuzzy-valued Kluvánek–Lewis integrals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-06

AUTHORS

Cai-Li Zhou, Jun-Hua Li, Xin Chen

ABSTRACT

In this paper, we first introduce a new fuzzy-valued integral of scalar-valued functions with respect to a fuzzy-valued measure with some natural properties. Then we prove Vitali type convergence theorem and dominated convergence theorem for this kind of integral.

PAGES

47

Journal

TITLE

Computational and Applied Mathematics

ISSUE

2

VOLUME

38

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40314-019-0797-5

DOI

http://dx.doi.org/10.1007/s40314-019-0797-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112541223


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hebei University", 
          "id": "https://www.grid.ac/institutes/grid.256885.4", 
          "name": [
            "Hebei Key Laboratory of Machine Learning and Computational Intelligence, College of Mathematics and Information Science, Hebei University, 071002, Baoding, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Cai-Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebei University", 
          "id": "https://www.grid.ac/institutes/grid.256885.4", 
          "name": [
            "Hebei Key Laboratory of Machine Learning and Computational Intelligence, College of Mathematics and Information Science, Hebei University, 071002, Baoding, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jun-Hua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebei University", 
          "id": "https://www.grid.ac/institutes/grid.256885.4", 
          "name": [
            "College of Mathematics and Information Science, Hebei University, 071002, Baoding, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Xin", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jmaa.2000.6976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003340921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmaa.2000.6976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003340921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0047-259x(85)90078-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004390283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2013.05.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006701824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0047-259x(85)90079-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009257885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spl.2012.02.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010533437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0114(98)00468-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011297079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0047-259x(78)90022-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011674785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/260238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023498855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(96)84616-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026575722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/ifs-151650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028206841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4134/ckms.2010.25.1.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036010612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1992-1091184-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036673598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2014.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039375532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(94)90303-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041051543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(94)90303-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041051543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2010.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041784786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/576134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052767526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1955-032-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072263995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2017.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091283517"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-06", 
    "datePublishedReg": "2019-06-01", 
    "description": "In this paper, we first introduce a new fuzzy-valued integral of scalar-valued functions with respect to a fuzzy-valued measure with some natural properties. Then we prove Vitali type convergence theorem and dominated convergence theorem for this kind of integral.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40314-019-0797-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1284620", 
        "issn": [
          "2238-3603", 
          "0101-8205"
        ], 
        "name": "Computational and Applied Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "Some properties and convergence theorems for fuzzy-valued Kluv\u00e1nek\u2013Lewis integrals", 
    "pagination": "47", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7b6da946ebbcc47a8aa54cd034911a526a23d4cccaa0bb1c0b3778b15e09e9e0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40314-019-0797-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112541223"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40314-019-0797-5", 
      "https://app.dimensions.ai/details/publication/pub.1112541223"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60357_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40314-019-0797-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0797-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0797-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0797-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0797-5'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      20 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40314-019-0797-5 schema:author N4488d4ecf15d407ca4f771a31ac5fd28
2 schema:citation https://doi.org/10.1006/jmaa.2000.6976
3 https://doi.org/10.1016/0047-259x(78)90022-2
4 https://doi.org/10.1016/0047-259x(85)90078-8
5 https://doi.org/10.1016/0047-259x(85)90079-x
6 https://doi.org/10.1016/0165-0114(94)90303-4
7 https://doi.org/10.1016/0165-0114(96)84616-1
8 https://doi.org/10.1016/j.amc.2013.05.040
9 https://doi.org/10.1016/j.cam.2010.01.016
10 https://doi.org/10.1016/j.fss.2014.09.019
11 https://doi.org/10.1016/j.fss.2017.08.003
12 https://doi.org/10.1016/j.spl.2012.02.021
13 https://doi.org/10.1016/s0165-0114(98)00468-0
14 https://doi.org/10.1090/s0002-9939-1992-1091184-9
15 https://doi.org/10.1155/2015/260238
16 https://doi.org/10.1155/2015/576134
17 https://doi.org/10.3233/ifs-151650
18 https://doi.org/10.4134/ckms.2010.25.1.037
19 https://doi.org/10.4153/cjm-1955-032-1
20 schema:datePublished 2019-06
21 schema:datePublishedReg 2019-06-01
22 schema:description In this paper, we first introduce a new fuzzy-valued integral of scalar-valued functions with respect to a fuzzy-valued measure with some natural properties. Then we prove Vitali type convergence theorem and dominated convergence theorem for this kind of integral.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N2f4981758c1f4b97b1f4ece5bd33f400
27 Nda48d6a95fb745f6bc076f1cb91de0ce
28 sg:journal.1284620
29 schema:name Some properties and convergence theorems for fuzzy-valued Kluvánek–Lewis integrals
30 schema:pagination 47
31 schema:productId N33faeff745f54883ac0b971f08c750cd
32 N6d7944d7b84c467c99471a8665b93050
33 N7912742029cd4ae9a827bec7041478d2
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112541223
35 https://doi.org/10.1007/s40314-019-0797-5
36 schema:sdDatePublished 2019-04-11T11:04
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N791e60f9bd8e4b0186605fa44e5c2e7e
39 schema:url https://link.springer.com/10.1007%2Fs40314-019-0797-5
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N11f51f9cf26b4d54b71100f96e1f1c45 schema:affiliation https://www.grid.ac/institutes/grid.256885.4
44 schema:familyName Zhou
45 schema:givenName Cai-Li
46 rdf:type schema:Person
47 N2f4981758c1f4b97b1f4ece5bd33f400 schema:issueNumber 2
48 rdf:type schema:PublicationIssue
49 N33faeff745f54883ac0b971f08c750cd schema:name dimensions_id
50 schema:value pub.1112541223
51 rdf:type schema:PropertyValue
52 N4488d4ecf15d407ca4f771a31ac5fd28 rdf:first N11f51f9cf26b4d54b71100f96e1f1c45
53 rdf:rest N6e99c22b3f7347d9a1363f18f43bdb0f
54 N52c68e58aa644781a040d02f9b1ec730 schema:affiliation https://www.grid.ac/institutes/grid.256885.4
55 schema:familyName Chen
56 schema:givenName Xin
57 rdf:type schema:Person
58 N6d7944d7b84c467c99471a8665b93050 schema:name doi
59 schema:value 10.1007/s40314-019-0797-5
60 rdf:type schema:PropertyValue
61 N6e99c22b3f7347d9a1363f18f43bdb0f rdf:first Ndd266190209c4d758bea6a834ef532d8
62 rdf:rest Ne5bf7981e7774838a24e26e1f2a43ffd
63 N7912742029cd4ae9a827bec7041478d2 schema:name readcube_id
64 schema:value 7b6da946ebbcc47a8aa54cd034911a526a23d4cccaa0bb1c0b3778b15e09e9e0
65 rdf:type schema:PropertyValue
66 N791e60f9bd8e4b0186605fa44e5c2e7e schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nda48d6a95fb745f6bc076f1cb91de0ce schema:volumeNumber 38
69 rdf:type schema:PublicationVolume
70 Ndd266190209c4d758bea6a834ef532d8 schema:affiliation https://www.grid.ac/institutes/grid.256885.4
71 schema:familyName Li
72 schema:givenName Jun-Hua
73 rdf:type schema:Person
74 Ne5bf7981e7774838a24e26e1f2a43ffd rdf:first N52c68e58aa644781a040d02f9b1ec730
75 rdf:rest rdf:nil
76 sg:journal.1284620 schema:issn 0101-8205
77 2238-3603
78 schema:name Computational and Applied Mathematics
79 rdf:type schema:Periodical
80 https://doi.org/10.1006/jmaa.2000.6976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003340921
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/0047-259x(78)90022-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011674785
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0047-259x(85)90078-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004390283
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0047-259x(85)90079-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009257885
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0165-0114(94)90303-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041051543
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0165-0114(96)84616-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026575722
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.amc.2013.05.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006701824
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.cam.2010.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041784786
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.fss.2014.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039375532
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.fss.2017.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091283517
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.spl.2012.02.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010533437
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/s0165-0114(98)00468-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011297079
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1090/s0002-9939-1992-1091184-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036673598
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1155/2015/260238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023498855
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1155/2015/576134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052767526
109 rdf:type schema:CreativeWork
110 https://doi.org/10.3233/ifs-151650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028206841
111 rdf:type schema:CreativeWork
112 https://doi.org/10.4134/ckms.2010.25.1.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036010612
113 rdf:type schema:CreativeWork
114 https://doi.org/10.4153/cjm-1955-032-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072263995
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.256885.4 schema:alternateName Hebei University
117 schema:name College of Mathematics and Information Science, Hebei University, 071002, Baoding, People’s Republic of China
118 Hebei Key Laboratory of Machine Learning and Computational Intelligence, College of Mathematics and Information Science, Hebei University, 071002, Baoding, People’s Republic of China
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...