A novel method to compute all eigenvalues of the polynomial eigenvalue problems in an open half plane View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-06

AUTHORS

Xiaoping Chen, Xi Yang, Wei Wei, Jinde Cao, Shuai Tang

ABSTRACT

In this paper, we introduce the linear fractional mapping and the contour integral method. Based on them, we develop a new numerical method to find all eigenvalues of the polynomial eigenvalue problems in an open half plane. Numerical examples are shown to illustrate the effectiveness of the proposed method.

PAGES

28

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40314-019-0778-8

DOI

http://dx.doi.org/10.1007/s40314-019-0778-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112541216


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Taizhou University", 
          "id": "https://www.grid.ac/institutes/grid.440657.4", 
          "name": [
            "Department of Mathematics, Southeast University, 210096, Nanjing, China", 
            "Department of Mathematics, Taizhou University, 225300, Taizhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Xiaoping", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Mathematics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Xi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Mathematics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Wei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southeast University", 
          "id": "https://www.grid.ac/institutes/grid.263826.b", 
          "name": [
            "School of Mathematics and Research Center for Complex Systems and Network Sciences, Southeast University, 210096, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Jinde", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Taizhou University", 
          "id": "https://www.grid.ac/institutes/grid.440657.4", 
          "name": [
            "Department of Mathematics, Taizhou University, 225300, Taizhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Shuai", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0024-3795(01)00542-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003236491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13160-010-0005-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011008201", 
          "https://doi.org/10.1007/s13160-010-0005-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13160-010-0005-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011008201", 
          "https://doi.org/10.1007/s13160-010-0005-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(01)00316-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014170542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(01)00316-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014170542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2005.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015014878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2017.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016131468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(01)00423-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019629408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(01)00423-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019629408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(99)00063-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023824804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nla.423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024313795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01731936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029970160", 
          "https://doi.org/10.1007/bf01731936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01731936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029970160", 
          "https://doi.org/10.1007/bf01731936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2009.12.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036300725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2009.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040239633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2003.10.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044380417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(76)90079-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045601001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(76)90079-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045601001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nla.1840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048954546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/050628283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062846135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/050628350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062846137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/050628362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062846138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0510106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062847207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/060663738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062849506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0710024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/140972494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062872360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/140979034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062872578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036144500381988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036144500381988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0895479802217928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062881754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aml.2017.03.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084522737"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-06", 
    "datePublishedReg": "2019-06-01", 
    "description": "In this paper, we introduce the linear fractional mapping and the contour integral method. Based on them, we develop a new numerical method to find all eigenvalues of the polynomial eigenvalue problems in an open half plane. Numerical examples are shown to illustrate the effectiveness of the proposed method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40314-019-0778-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1284620", 
        "issn": [
          "2238-3603", 
          "0101-8205"
        ], 
        "name": "Computational and Applied Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "A novel method to compute all eigenvalues of the polynomial eigenvalue problems in an open half plane", 
    "pagination": "28", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e283db3696058ff604d4ecd014826bb5a2a94abc09c2997ef61a474ae821c3d7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40314-019-0778-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112541216"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40314-019-0778-8", 
      "https://app.dimensions.ai/details/publication/pub.1112541216"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60338_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40314-019-0778-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0778-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0778-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0778-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40314-019-0778-8'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40314-019-0778-8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N74eb8909ec594128920146c8a5f31af8
4 schema:citation sg:pub.10.1007/bf01731936
5 sg:pub.10.1007/s13160-010-0005-x
6 https://doi.org/10.1002/nla.1840
7 https://doi.org/10.1002/nla.423
8 https://doi.org/10.1016/0045-7825(76)90079-7
9 https://doi.org/10.1016/j.aml.2017.03.021
10 https://doi.org/10.1016/j.jcp.2003.10.026
11 https://doi.org/10.1016/j.jcp.2009.12.024
12 https://doi.org/10.1016/j.jsv.2009.04.008
13 https://doi.org/10.1016/j.laa.2005.09.016
14 https://doi.org/10.1016/j.laa.2017.01.018
15 https://doi.org/10.1016/s0024-3795(01)00316-0
16 https://doi.org/10.1016/s0024-3795(01)00423-2
17 https://doi.org/10.1016/s0024-3795(01)00542-0
18 https://doi.org/10.1016/s0024-3795(99)00063-4
19 https://doi.org/10.1137/050628283
20 https://doi.org/10.1137/050628350
21 https://doi.org/10.1137/050628362
22 https://doi.org/10.1137/0510106
23 https://doi.org/10.1137/060663738
24 https://doi.org/10.1137/0710024
25 https://doi.org/10.1137/140972494
26 https://doi.org/10.1137/140979034
27 https://doi.org/10.1137/s0036144500381988
28 https://doi.org/10.1137/s0895479802217928
29 schema:datePublished 2019-06
30 schema:datePublishedReg 2019-06-01
31 schema:description In this paper, we introduce the linear fractional mapping and the contour integral method. Based on them, we develop a new numerical method to find all eigenvalues of the polynomial eigenvalue problems in an open half plane. Numerical examples are shown to illustrate the effectiveness of the proposed method.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N37d5af87bb44432b884edd4000f4900a
36 N76437d426447444c90986c89f8b8b74e
37 sg:journal.1284620
38 schema:name A novel method to compute all eigenvalues of the polynomial eigenvalue problems in an open half plane
39 schema:pagination 28
40 schema:productId N2ed05370f003449cbdbcf9bc31f899c1
41 Nc374f5ea06a64b25ab8366395bd73240
42 Nfc3ec67c25524f2b9661c949edb91a20
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112541216
44 https://doi.org/10.1007/s40314-019-0778-8
45 schema:sdDatePublished 2019-04-11T11:00
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nef064007e8204a0e808b3db5a9c19d7d
48 schema:url https://link.springer.com/10.1007%2Fs40314-019-0778-8
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N0754a43e70cd40589032c7f4e26b414a schema:affiliation https://www.grid.ac/institutes/grid.64938.30
53 schema:familyName Wei
54 schema:givenName Wei
55 rdf:type schema:Person
56 N25560a6cc6c745a090babb041eab0196 rdf:first N281ed42ae9f642bfa31afbd8c0189ff2
57 rdf:rest rdf:nil
58 N281ed42ae9f642bfa31afbd8c0189ff2 schema:affiliation https://www.grid.ac/institutes/grid.440657.4
59 schema:familyName Tang
60 schema:givenName Shuai
61 rdf:type schema:Person
62 N2ed05370f003449cbdbcf9bc31f899c1 schema:name readcube_id
63 schema:value e283db3696058ff604d4ecd014826bb5a2a94abc09c2997ef61a474ae821c3d7
64 rdf:type schema:PropertyValue
65 N37d5af87bb44432b884edd4000f4900a schema:volumeNumber 38
66 rdf:type schema:PublicationVolume
67 N45a8fd5d87b04cec8f591030fe009859 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
68 schema:familyName Cao
69 schema:givenName Jinde
70 rdf:type schema:Person
71 N74eb8909ec594128920146c8a5f31af8 rdf:first N76f1b3b5f85740babee25b75c066e5c5
72 rdf:rest Nc5b125da9980413d959df044ee305f83
73 N76437d426447444c90986c89f8b8b74e schema:issueNumber 2
74 rdf:type schema:PublicationIssue
75 N76f1b3b5f85740babee25b75c066e5c5 schema:affiliation https://www.grid.ac/institutes/grid.440657.4
76 schema:familyName Chen
77 schema:givenName Xiaoping
78 rdf:type schema:Person
79 N7abc6d598e2346fc9d7723249f7fbad4 rdf:first N0754a43e70cd40589032c7f4e26b414a
80 rdf:rest Neac8c11ef5ef42ebb29543f00177eef8
81 Nc374f5ea06a64b25ab8366395bd73240 schema:name doi
82 schema:value 10.1007/s40314-019-0778-8
83 rdf:type schema:PropertyValue
84 Nc5b125da9980413d959df044ee305f83 rdf:first Nf22238b6d905471685b01002a75a369a
85 rdf:rest N7abc6d598e2346fc9d7723249f7fbad4
86 Neac8c11ef5ef42ebb29543f00177eef8 rdf:first N45a8fd5d87b04cec8f591030fe009859
87 rdf:rest N25560a6cc6c745a090babb041eab0196
88 Nef064007e8204a0e808b3db5a9c19d7d schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Nf22238b6d905471685b01002a75a369a schema:affiliation https://www.grid.ac/institutes/grid.64938.30
91 schema:familyName Yang
92 schema:givenName Xi
93 rdf:type schema:Person
94 Nfc3ec67c25524f2b9661c949edb91a20 schema:name dimensions_id
95 schema:value pub.1112541216
96 rdf:type schema:PropertyValue
97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
98 schema:name Mathematical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
101 schema:name Pure Mathematics
102 rdf:type schema:DefinedTerm
103 sg:journal.1284620 schema:issn 0101-8205
104 2238-3603
105 schema:name Computational and Applied Mathematics
106 rdf:type schema:Periodical
107 sg:pub.10.1007/bf01731936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029970160
108 https://doi.org/10.1007/bf01731936
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s13160-010-0005-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011008201
111 https://doi.org/10.1007/s13160-010-0005-x
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1002/nla.1840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048954546
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/nla.423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024313795
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0045-7825(76)90079-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045601001
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.aml.2017.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084522737
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.jcp.2003.10.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044380417
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.jcp.2009.12.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036300725
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jsv.2009.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040239633
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.laa.2005.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015014878
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.laa.2017.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016131468
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/s0024-3795(01)00316-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014170542
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s0024-3795(01)00423-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019629408
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0024-3795(01)00542-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003236491
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0024-3795(99)00063-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023824804
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1137/050628283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846135
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1137/050628350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846137
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1137/050628362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846138
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1137/0510106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062847207
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1137/060663738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062849506
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1137/0710024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852089
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1137/140972494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062872360
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1137/140979034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062872578
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1137/s0036144500381988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877750
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1137/s0895479802217928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062881754
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.263826.b schema:alternateName Southeast University
160 schema:name School of Mathematics and Research Center for Complex Systems and Network Sciences, Southeast University, 210096, Nanjing, China
161 rdf:type schema:Organization
162 https://www.grid.ac/institutes/grid.440657.4 schema:alternateName Taizhou University
163 schema:name Department of Mathematics, Southeast University, 210096, Nanjing, China
164 Department of Mathematics, Taizhou University, 225300, Taizhou, China
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.64938.30 schema:alternateName Nanjing University of Aeronautics and Astronautics
167 schema:name Department of Mathematics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...