Extended Newton-type method for nonlinear functions with values in a cone View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04-05

AUTHORS

G. N. Silva, P. S. M. Santos, S. S. Souza

ABSTRACT

In this paper, we consider the problem of finding solutions of nonlinear inclusion problems in Banach space. Using convex optimization techniques introduced by Robinson (Numer Math 19:341–347, 1972), a convergence theorem for Kantorovich-like methods is given, which improves the results of Yamamoto (Jpn J Appl Math 3(2):295–313, 1986; Numer Math 51(5):545–557, 1987) and Robinson (Numer Math 19:341–347, 1972). The result is compared with previously known results. Numerical examples further justify the theoretical results. More... »

PAGES

5082-5097

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40314-018-0617-3

DOI

http://dx.doi.org/10.1007/s40314-018-0617-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103172740


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centro das Ci\u00eancias Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, CEP 47808-021, Barreiras, BA, Brazil", 
          "id": "http://www.grid.ac/institutes/grid.472638.c", 
          "name": [
            "Centro das Ci\u00eancias Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, CEP 47808-021, Barreiras, BA, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Silva", 
        "givenName": "G. N.", 
        "id": "sg:person.016672542147.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016672542147.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento de Matem\u00e1tica, Parna\u00edba, Universidade Federal do Piau\u00ed, Parna\u00edba, PI, Brazil", 
          "id": "http://www.grid.ac/institutes/grid.412380.c", 
          "name": [
            "Departamento de Matem\u00e1tica, Parna\u00edba, Universidade Federal do Piau\u00ed, Parna\u00edba, PI, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Santos", 
        "givenName": "P. S. M.", 
        "id": "sg:person.011357167137.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011357167137.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento de Matem\u00e1tica, Parna\u00edba, Universidade Federal do Piau\u00ed, Parna\u00edba, PI, Brazil", 
          "id": "http://www.grid.ac/institutes/grid.412380.c", 
          "name": [
            "Departamento de Matem\u00e1tica, Parna\u00edba, Universidade Federal do Piau\u00ed, Parna\u00edba, PI, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Souza", 
        "givenName": "S. S.", 
        "id": "sg:person.012154547537.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012154547537.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01404880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048822194", 
          "https://doi.org/10.1007/bf01404880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01385696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045998532", 
          "https://doi.org/10.1007/bf01385696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-87821-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022362018", 
          "https://doi.org/10.1007/978-0-387-87821-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01436488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052532345", 
          "https://doi.org/10.1007/bf01436488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10915-016-0314-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029517099", 
          "https://doi.org/10.1007/s10915-016-0314-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0701-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020016656", 
          "https://doi.org/10.1007/978-1-4612-0701-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01204181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001987923", 
          "https://doi.org/10.1007/bf01204181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01400355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005845346", 
          "https://doi.org/10.1007/bf01400355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10589-007-9082-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053719030", 
          "https://doi.org/10.1007/s10589-007-9082-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01399322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032600966", 
          "https://doi.org/10.1007/bf01399322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03167104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030406639", 
          "https://doi.org/10.1007/bf03167104"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04-05", 
    "datePublishedReg": "2018-04-05", 
    "description": "In this paper, we consider the problem of finding solutions of nonlinear inclusion problems in Banach space. Using convex optimization techniques introduced by Robinson (Numer Math 19:341\u2013347, 1972), a convergence theorem for Kantorovich-like methods is given, which improves the results of Yamamoto (Jpn J Appl Math 3(2):295\u2013313, 1986; Numer Math 51(5):545\u2013557, 1987) and Robinson (Numer Math 19:341\u2013347, 1972). The result is compared with previously known results. Numerical examples further justify the theoretical results.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40314-018-0617-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1284620", 
        "issn": [
          "2238-3603", 
          "0101-8205"
        ], 
        "name": "Computational and Applied Mathematics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "keywords": [
      "Newton-type method", 
      "convex optimization techniques", 
      "nonlinear inclusion problems", 
      "convergence theorem", 
      "Banach spaces", 
      "nonlinear function", 
      "numerical examples", 
      "theoretical results", 
      "optimization techniques", 
      "inclusion problem", 
      "theorem", 
      "problem", 
      "space", 
      "solution", 
      "Robinson", 
      "results", 
      "cone", 
      "function", 
      "technique", 
      "Yamamoto", 
      "values", 
      "method", 
      "example", 
      "paper"
    ], 
    "name": "Extended Newton-type method for nonlinear functions with values in a cone", 
    "pagination": "5082-5097", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103172740"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40314-018-0617-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40314-018-0617-3", 
      "https://app.dimensions.ai/details/publication/pub.1103172740"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_771.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40314-018-0617-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40314-018-0617-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40314-018-0617-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40314-018-0617-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40314-018-0617-3'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      22 PREDICATES      60 URIs      41 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40314-018-0617-3 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N860eb2dd04ca45318cd9f3cc71fb950a
4 schema:citation sg:pub.10.1007/978-0-387-87821-8
5 sg:pub.10.1007/978-1-4612-0701-6
6 sg:pub.10.1007/bf01204181
7 sg:pub.10.1007/bf01385696
8 sg:pub.10.1007/bf01399322
9 sg:pub.10.1007/bf01400355
10 sg:pub.10.1007/bf01404880
11 sg:pub.10.1007/bf01436488
12 sg:pub.10.1007/bf03167104
13 sg:pub.10.1007/s10589-007-9082-4
14 sg:pub.10.1007/s10915-016-0314-6
15 schema:datePublished 2018-04-05
16 schema:datePublishedReg 2018-04-05
17 schema:description In this paper, we consider the problem of finding solutions of nonlinear inclusion problems in Banach space. Using convex optimization techniques introduced by Robinson (Numer Math 19:341–347, 1972), a convergence theorem for Kantorovich-like methods is given, which improves the results of Yamamoto (Jpn J Appl Math 3(2):295–313, 1986; Numer Math 51(5):545–557, 1987) and Robinson (Numer Math 19:341–347, 1972). The result is compared with previously known results. Numerical examples further justify the theoretical results.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N6d47fb866eed4b2f9800d3e3b60ee6df
22 N7a8feed87a1c4bb2af315fa7a94fab92
23 sg:journal.1284620
24 schema:keywords Banach spaces
25 Newton-type method
26 Robinson
27 Yamamoto
28 cone
29 convergence theorem
30 convex optimization techniques
31 example
32 function
33 inclusion problem
34 method
35 nonlinear function
36 nonlinear inclusion problems
37 numerical examples
38 optimization techniques
39 paper
40 problem
41 results
42 solution
43 space
44 technique
45 theorem
46 theoretical results
47 values
48 schema:name Extended Newton-type method for nonlinear functions with values in a cone
49 schema:pagination 5082-5097
50 schema:productId N07827c68ad4f4513a963da63a64f53d2
51 Nc7f4daeb90dc47de819c220d644aff33
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103172740
53 https://doi.org/10.1007/s40314-018-0617-3
54 schema:sdDatePublished 2022-05-10T10:17
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Ne643925aa1ac4bc08a54aa39c1e7c3cc
57 schema:url https://doi.org/10.1007/s40314-018-0617-3
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N07827c68ad4f4513a963da63a64f53d2 schema:name doi
62 schema:value 10.1007/s40314-018-0617-3
63 rdf:type schema:PropertyValue
64 N6d47fb866eed4b2f9800d3e3b60ee6df schema:volumeNumber 37
65 rdf:type schema:PublicationVolume
66 N7a8feed87a1c4bb2af315fa7a94fab92 schema:issueNumber 4
67 rdf:type schema:PublicationIssue
68 N860eb2dd04ca45318cd9f3cc71fb950a rdf:first sg:person.016672542147.21
69 rdf:rest Nefefedd6bbd4468983caa7b813908b79
70 Nc644478e4a4e43c7874f4cb7a6fcc76e rdf:first sg:person.012154547537.42
71 rdf:rest rdf:nil
72 Nc7f4daeb90dc47de819c220d644aff33 schema:name dimensions_id
73 schema:value pub.1103172740
74 rdf:type schema:PropertyValue
75 Ne643925aa1ac4bc08a54aa39c1e7c3cc schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nefefedd6bbd4468983caa7b813908b79 rdf:first sg:person.011357167137.28
78 rdf:rest Nc644478e4a4e43c7874f4cb7a6fcc76e
79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mathematical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
83 schema:name Numerical and Computational Mathematics
84 rdf:type schema:DefinedTerm
85 sg:journal.1284620 schema:issn 0101-8205
86 2238-3603
87 schema:name Computational and Applied Mathematics
88 schema:publisher Springer Nature
89 rdf:type schema:Periodical
90 sg:person.011357167137.28 schema:affiliation grid-institutes:grid.412380.c
91 schema:familyName Santos
92 schema:givenName P. S. M.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011357167137.28
94 rdf:type schema:Person
95 sg:person.012154547537.42 schema:affiliation grid-institutes:grid.412380.c
96 schema:familyName Souza
97 schema:givenName S. S.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012154547537.42
99 rdf:type schema:Person
100 sg:person.016672542147.21 schema:affiliation grid-institutes:grid.472638.c
101 schema:familyName Silva
102 schema:givenName G. N.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016672542147.21
104 rdf:type schema:Person
105 sg:pub.10.1007/978-0-387-87821-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022362018
106 https://doi.org/10.1007/978-0-387-87821-8
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/978-1-4612-0701-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020016656
109 https://doi.org/10.1007/978-1-4612-0701-6
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf01204181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001987923
112 https://doi.org/10.1007/bf01204181
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf01385696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045998532
115 https://doi.org/10.1007/bf01385696
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf01399322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032600966
118 https://doi.org/10.1007/bf01399322
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf01400355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005845346
121 https://doi.org/10.1007/bf01400355
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf01404880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048822194
124 https://doi.org/10.1007/bf01404880
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf01436488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052532345
127 https://doi.org/10.1007/bf01436488
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf03167104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030406639
130 https://doi.org/10.1007/bf03167104
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10589-007-9082-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053719030
133 https://doi.org/10.1007/s10589-007-9082-4
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10915-016-0314-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029517099
136 https://doi.org/10.1007/s10915-016-0314-6
137 rdf:type schema:CreativeWork
138 grid-institutes:grid.412380.c schema:alternateName Departamento de Matemática, Parnaíba, Universidade Federal do Piauí, Parnaíba, PI, Brazil
139 schema:name Departamento de Matemática, Parnaíba, Universidade Federal do Piauí, Parnaíba, PI, Brazil
140 rdf:type schema:Organization
141 grid-institutes:grid.472638.c schema:alternateName Centro das Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, CEP 47808-021, Barreiras, BA, Brazil
142 schema:name Centro das Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, CEP 47808-021, Barreiras, BA, Brazil
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...