A Krasnosel’skii–Zincenko-type method in K-normed spaces for solving equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-05-18

AUTHORS

Ioannis K. Argyros, Gilson N. Silva

ABSTRACT

We present a new semilocal convergence result for a Krasnosel’skii–Zincenko-type method (KZTM) to solve a nonlinear operator equation in a K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\!$$\end{document}-normed space setting. Using our new idea of restricted convergence domains, we show how to expand the convergence domain of KZTM under the same computational cost as in earlier studies. Numerical examples show how to solve an equation in cases not possible before. More... »

PAGES

2399-2412

References to SciGraph publications

  • 2000-10. On the Newton-Kantorovich method inK-normed spaces in RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO SERIES 2
  • 2005-05. Dynamics of the King and Jarratt iterations in AEQUATIONES MATHEMATICAE
  • 2004-06. A convergence analysis and applications for the Newton-Kantorovich method in K-normed spaces in RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO SERIES 2
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40314-017-0456-7

    DOI

    http://dx.doi.org/10.1007/s40314-017-0456-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085430330


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA", 
              "id": "http://www.grid.ac/institutes/grid.253592.a", 
              "name": [
                "Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Argyros", 
            "givenName": "Ioannis K.", 
            "id": "sg:person.015707547201.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universidade Federal do Oeste da Bahia, Centro das Ci\u00eancias Exatas e das Tecnologias, 47808-021, Barreiras, BA, Brazil", 
              "id": "http://www.grid.ac/institutes/grid.472638.c", 
              "name": [
                "Universidade Federal do Oeste da Bahia, Centro das Ci\u00eancias Exatas e das Tecnologias, 47808-021, Barreiras, BA, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Silva", 
            "givenName": "Gilson N.", 
            "id": "sg:person.016672542147.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016672542147.21"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00010-004-2733-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039772729", 
              "https://doi.org/10.1007/s00010-004-2733-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02872876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037843533", 
              "https://doi.org/10.1007/bf02872876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02904265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008500213", 
              "https://doi.org/10.1007/bf02904265"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-05-18", 
        "datePublishedReg": "2017-05-18", 
        "description": "We present a new semilocal convergence result for a Krasnosel\u2019skii\u2013Zincenko-type method (KZTM) to solve a nonlinear operator equation in a K\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$K\\!$$\\end{document}-normed space setting. Using our new idea of restricted convergence domains, we show how to expand the convergence domain of KZTM under the same computational cost as in earlier studies. Numerical examples show how to solve an equation in cases not possible before.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s40314-017-0456-7", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1284620", 
            "issn": [
              "2238-3603", 
              "0101-8205"
            ], 
            "name": "Computational and Applied Mathematics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "37"
          }
        ], 
        "keywords": [
          "type method", 
          "convergence domain", 
          "nonlinear operator equations", 
          "semilocal convergence results", 
          "new semilocal convergence results", 
          "same computational cost", 
          "operator equations", 
          "space setting", 
          "convergence results", 
          "normed spaces", 
          "numerical examples", 
          "computational cost", 
          "equations", 
          "new ideas", 
          "space", 
          "domain", 
          "idea", 
          "cost", 
          "cases", 
          "results", 
          "setting", 
          "earlier studies", 
          "study", 
          "method", 
          "example", 
          "Krasnosel\u2019skii\u2013Zincenko", 
          "KZTM"
        ], 
        "name": "A Krasnosel\u2019skii\u2013Zincenko-type method in K-normed spaces for solving equations", 
        "pagination": "2399-2412", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085430330"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40314-017-0456-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40314-017-0456-7", 
          "https://app.dimensions.ai/details/publication/pub.1085430330"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_743.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s40314-017-0456-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40314-017-0456-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40314-017-0456-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40314-017-0456-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40314-017-0456-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    107 TRIPLES      22 PREDICATES      55 URIs      44 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40314-017-0456-7 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N36a376404ba5431c8348310d68ba7acc
    4 schema:citation sg:pub.10.1007/bf02872876
    5 sg:pub.10.1007/bf02904265
    6 sg:pub.10.1007/s00010-004-2733-y
    7 schema:datePublished 2017-05-18
    8 schema:datePublishedReg 2017-05-18
    9 schema:description We present a new semilocal convergence result for a Krasnosel’skii–Zincenko-type method (KZTM) to solve a nonlinear operator equation in a K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\!$$\end{document}-normed space setting. Using our new idea of restricted convergence domains, we show how to expand the convergence domain of KZTM under the same computational cost as in earlier studies. Numerical examples show how to solve an equation in cases not possible before.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf Nb4e60c3be76341619b6ea15742dad1b1
    14 Nd5521101376e46b09d6181098312bc50
    15 sg:journal.1284620
    16 schema:keywords KZTM
    17 Krasnosel’skii–Zincenko
    18 cases
    19 computational cost
    20 convergence domain
    21 convergence results
    22 cost
    23 domain
    24 earlier studies
    25 equations
    26 example
    27 idea
    28 method
    29 new ideas
    30 new semilocal convergence results
    31 nonlinear operator equations
    32 normed spaces
    33 numerical examples
    34 operator equations
    35 results
    36 same computational cost
    37 semilocal convergence results
    38 setting
    39 space
    40 space setting
    41 study
    42 type method
    43 schema:name A Krasnosel’skii–Zincenko-type method in K-normed spaces for solving equations
    44 schema:pagination 2399-2412
    45 schema:productId N77f6f14531984c9d86489781f7c77f3e
    46 Ndfde928dd4a74ee59c5558d1d1c304f7
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085430330
    48 https://doi.org/10.1007/s40314-017-0456-7
    49 schema:sdDatePublished 2021-12-01T19:40
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher Nec8b4da02e96491d9cd414be7a299cf2
    52 schema:url https://doi.org/10.1007/s40314-017-0456-7
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N36a376404ba5431c8348310d68ba7acc rdf:first sg:person.015707547201.06
    57 rdf:rest N6e6877056b75410a966ffde330f290ac
    58 N6e6877056b75410a966ffde330f290ac rdf:first sg:person.016672542147.21
    59 rdf:rest rdf:nil
    60 N77f6f14531984c9d86489781f7c77f3e schema:name dimensions_id
    61 schema:value pub.1085430330
    62 rdf:type schema:PropertyValue
    63 Nb4e60c3be76341619b6ea15742dad1b1 schema:issueNumber 3
    64 rdf:type schema:PublicationIssue
    65 Nd5521101376e46b09d6181098312bc50 schema:volumeNumber 37
    66 rdf:type schema:PublicationVolume
    67 Ndfde928dd4a74ee59c5558d1d1c304f7 schema:name doi
    68 schema:value 10.1007/s40314-017-0456-7
    69 rdf:type schema:PropertyValue
    70 Nec8b4da02e96491d9cd414be7a299cf2 schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Mathematical Sciences
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Pure Mathematics
    77 rdf:type schema:DefinedTerm
    78 sg:journal.1284620 schema:issn 0101-8205
    79 2238-3603
    80 schema:name Computational and Applied Mathematics
    81 schema:publisher Springer Nature
    82 rdf:type schema:Periodical
    83 sg:person.015707547201.06 schema:affiliation grid-institutes:grid.253592.a
    84 schema:familyName Argyros
    85 schema:givenName Ioannis K.
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06
    87 rdf:type schema:Person
    88 sg:person.016672542147.21 schema:affiliation grid-institutes:grid.472638.c
    89 schema:familyName Silva
    90 schema:givenName Gilson N.
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016672542147.21
    92 rdf:type schema:Person
    93 sg:pub.10.1007/bf02872876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037843533
    94 https://doi.org/10.1007/bf02872876
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/bf02904265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008500213
    97 https://doi.org/10.1007/bf02904265
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/s00010-004-2733-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1039772729
    100 https://doi.org/10.1007/s00010-004-2733-y
    101 rdf:type schema:CreativeWork
    102 grid-institutes:grid.253592.a schema:alternateName Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA
    103 schema:name Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA
    104 rdf:type schema:Organization
    105 grid-institutes:grid.472638.c schema:alternateName Universidade Federal do Oeste da Bahia, Centro das Ciências Exatas e das Tecnologias, 47808-021, Barreiras, BA, Brazil
    106 schema:name Universidade Federal do Oeste da Bahia, Centro das Ciências Exatas e das Tecnologias, 47808-021, Barreiras, BA, Brazil
    107 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...