Kumaraswamy distribution: different methods of estimation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05

AUTHORS

Sanku Dey, Josmar Mazucheli, Saralees Nadarajah

ABSTRACT

This paper addresses different methods of estimation of the unknown parameters of a two-parameter Kumaraswamy distribution from a frequentist point of view. We briefly describe ten different frequentist approaches, namely, maximum likelihood estimators, moments estimators, L-moments estimators, percentile based estimators, least squares estimators, weighted least squares estimators, maximum product of spacings estimators, Cramér–von-Mises estimators, Anderson–Darling estimators and right tailed Anderson–Darling estimators. Monte Carlo simulations and two real data applications are performed to compare the performances of the estimators for both small and large samples. More... »

PAGES

2094-2111

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40314-017-0441-1

DOI

http://dx.doi.org/10.1007/s40314-017-0441-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084040219


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "St. Anthony\u2019s College, 793001, Shillong, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dey", 
        "givenName": "Sanku", 
        "id": "sg:person.010437742757.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010437742757.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State University of Maringa", 
          "id": "https://www.grid.ac/institutes/grid.271762.7", 
          "name": [
            "Universidade Estadual de Maring\u00e1, Maring\u00e1, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mazucheli", 
        "givenName": "Josmar", 
        "id": "sg:person.015343632713.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015343632713.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "University of Manchester, M13 9PL, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nadarajah", 
        "givenName": "Saralees", 
        "id": "sg:person.016342517733.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016342517733.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00949655.2012.706813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000419443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00949655.2010.511621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002358393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00362-012-0432-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003230205", 
          "https://doi.org/10.1007/s00362-012-0432-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00949655.2012.683003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008442680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4314/ijest.v3i9.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008613626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4314/ijest.v3i9.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008613626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02331888.2011.559657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009620609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.stamet.2008.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011681931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00949658808811068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012757663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.stamet.2008.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013163122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2195-5832-1-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016182508", 
          "https://doi.org/10.1186/2195-5832-1-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00949655.2012.745125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018109995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2004.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019748287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jspi.2007.03.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023868145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10260-011-0183-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027531174", 
          "https://doi.org/10.1007/s10260-011-0183-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00949650108812098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028283623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.stamet.2011.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028707091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2010.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028719491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1080/15598608.2012.719814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029909360", 
          "https://doi.org/10.1080/15598608.2012.719814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1080/15598608.2012.719814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029909360", 
          "https://doi.org/10.1080/15598608.2012.719814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/eqc-2013-0006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030623250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spl.2015.04.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030642276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cta.173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035065395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00362-013-0526-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037943877", 
          "https://doi.org/10.1007/s00362-013-0526-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00949655.2012.750658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044400672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01966324.2013.878676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045148911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2007.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045956690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00362-011-0417-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048228653", 
          "https://doi.org/10.1007/s00362-011-0417-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13571-011-0015-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048713793", 
          "https://doi.org/10.1007/s13571-011-0015-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40488-014-0017-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049831990", 
          "https://doi.org/10.1186/s40488-014-0017-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40488-014-0017-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049831990", 
          "https://doi.org/10.1186/s40488-014-0017-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(80)90036-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052686366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(80)90036-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052686366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1954.10501232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058299173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1974.10480196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058301281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/63.1.161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059418503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/11-bjps149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064392508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177729437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064401678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14419/ijasp.v2i1.1729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067302147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15672/hjms.2014418153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068029858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18187/pjsor.v11i2.969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068577083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18187/pjsor.v8i3.520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068577311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2991/jsta.2013.12.2.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070961924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2991/jsta.2013.12.2.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070961924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2991/jsta.2014.13.2.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070961956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2991/jsta.2014.13.2.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070961956"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05", 
    "datePublishedReg": "2018-05-01", 
    "description": "This paper addresses different methods of estimation of the unknown parameters of a two-parameter Kumaraswamy distribution from a frequentist point of view. We briefly describe ten different frequentist approaches, namely, maximum likelihood estimators, moments estimators, L-moments estimators, percentile based estimators, least squares estimators, weighted least squares estimators, maximum product of spacings estimators, Cram\u00e9r\u2013von-Mises estimators, Anderson\u2013Darling estimators and right tailed Anderson\u2013Darling estimators. Monte Carlo simulations and two real data applications are performed to compare the performances of the estimators for both small and large samples.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40314-017-0441-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1284620", 
        "issn": [
          "2238-3603", 
          "0101-8205"
        ], 
        "name": "Computational and Applied Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "name": "Kumaraswamy distribution: different methods of estimation", 
    "pagination": "2094-2111", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ef8d7bdfcd698cc47760ff7f5b593c57e086f9b4902a0b4abfa18798461b18cd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40314-017-0441-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084040219"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40314-017-0441-1", 
      "https://app.dimensions.ai/details/publication/pub.1084040219"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113670_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40314-017-0441-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40314-017-0441-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40314-017-0441-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40314-017-0441-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40314-017-0441-1'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      67 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40314-017-0441-1 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N495038dd64cd4851a47ee340f06a1960
4 schema:citation sg:pub.10.1007/s00362-011-0417-y
5 sg:pub.10.1007/s00362-012-0432-7
6 sg:pub.10.1007/s00362-013-0526-x
7 sg:pub.10.1007/s10260-011-0183-y
8 sg:pub.10.1007/s13571-011-0015-y
9 sg:pub.10.1080/15598608.2012.719814
10 sg:pub.10.1186/2195-5832-1-8
11 sg:pub.10.1186/s40488-014-0017-1
12 https://doi.org/10.1002/cta.173
13 https://doi.org/10.1016/0022-1694(80)90036-0
14 https://doi.org/10.1016/j.csda.2004.05.008
15 https://doi.org/10.1016/j.jfranklin.2010.06.010
16 https://doi.org/10.1016/j.jhydrol.2007.09.008
17 https://doi.org/10.1016/j.jspi.2007.03.030
18 https://doi.org/10.1016/j.spl.2015.04.031
19 https://doi.org/10.1016/j.stamet.2008.04.001
20 https://doi.org/10.1016/j.stamet.2008.10.001
21 https://doi.org/10.1016/j.stamet.2011.04.001
22 https://doi.org/10.1080/00949650108812098
23 https://doi.org/10.1080/00949655.2010.511621
24 https://doi.org/10.1080/00949655.2012.683003
25 https://doi.org/10.1080/00949655.2012.706813
26 https://doi.org/10.1080/00949655.2012.745125
27 https://doi.org/10.1080/00949655.2012.750658
28 https://doi.org/10.1080/00949658808811068
29 https://doi.org/10.1080/01621459.1954.10501232
30 https://doi.org/10.1080/01621459.1974.10480196
31 https://doi.org/10.1080/01966324.2013.878676
32 https://doi.org/10.1080/02331888.2011.559657
33 https://doi.org/10.1093/biomet/63.1.161
34 https://doi.org/10.1214/11-bjps149
35 https://doi.org/10.1214/aoms/1177729437
36 https://doi.org/10.14419/ijasp.v2i1.1729
37 https://doi.org/10.1515/eqc-2013-0006
38 https://doi.org/10.15672/hjms.2014418153
39 https://doi.org/10.18187/pjsor.v11i2.969
40 https://doi.org/10.18187/pjsor.v8i3.520
41 https://doi.org/10.2991/jsta.2013.12.2.1
42 https://doi.org/10.2991/jsta.2014.13.2.3
43 https://doi.org/10.4314/ijest.v3i9.4
44 schema:datePublished 2018-05
45 schema:datePublishedReg 2018-05-01
46 schema:description This paper addresses different methods of estimation of the unknown parameters of a two-parameter Kumaraswamy distribution from a frequentist point of view. We briefly describe ten different frequentist approaches, namely, maximum likelihood estimators, moments estimators, L-moments estimators, percentile based estimators, least squares estimators, weighted least squares estimators, maximum product of spacings estimators, Cramér–von-Mises estimators, Anderson–Darling estimators and right tailed Anderson–Darling estimators. Monte Carlo simulations and two real data applications are performed to compare the performances of the estimators for both small and large samples.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf N07fbd5a1c3f84e55b19643d26f795ae6
51 Nb4ee9fd0f7a0444d80e2fe89e9c2d15c
52 sg:journal.1284620
53 schema:name Kumaraswamy distribution: different methods of estimation
54 schema:pagination 2094-2111
55 schema:productId N8a5cf1aacf124adfbc57aff7ff349324
56 N8cc176bca9954df8bfa2d89c7abed8a4
57 Nf9425f260e044722a2efe9ff5ba7b9ca
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084040219
59 https://doi.org/10.1007/s40314-017-0441-1
60 schema:sdDatePublished 2019-04-11T10:36
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Ndda523f48a314ca2a1fe23acf50239b6
63 schema:url https://link.springer.com/10.1007%2Fs40314-017-0441-1
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N07fbd5a1c3f84e55b19643d26f795ae6 schema:issueNumber 2
68 rdf:type schema:PublicationIssue
69 N17fb863d00414269a9c47bf81d97263c rdf:first sg:person.016342517733.01
70 rdf:rest rdf:nil
71 N495038dd64cd4851a47ee340f06a1960 rdf:first sg:person.010437742757.48
72 rdf:rest N60b2347714f34bad8b12017c80d3e91e
73 N60b2347714f34bad8b12017c80d3e91e rdf:first sg:person.015343632713.90
74 rdf:rest N17fb863d00414269a9c47bf81d97263c
75 N8a5cf1aacf124adfbc57aff7ff349324 schema:name dimensions_id
76 schema:value pub.1084040219
77 rdf:type schema:PropertyValue
78 N8cc176bca9954df8bfa2d89c7abed8a4 schema:name readcube_id
79 schema:value ef8d7bdfcd698cc47760ff7f5b593c57e086f9b4902a0b4abfa18798461b18cd
80 rdf:type schema:PropertyValue
81 N964414ca75284ed9b812abae4c19966c schema:name St. Anthony’s College, 793001, Shillong, India
82 rdf:type schema:Organization
83 Nb4ee9fd0f7a0444d80e2fe89e9c2d15c schema:volumeNumber 37
84 rdf:type schema:PublicationVolume
85 Ndda523f48a314ca2a1fe23acf50239b6 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Nf9425f260e044722a2efe9ff5ba7b9ca schema:name doi
88 schema:value 10.1007/s40314-017-0441-1
89 rdf:type schema:PropertyValue
90 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
91 schema:name Mathematical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
94 schema:name Statistics
95 rdf:type schema:DefinedTerm
96 sg:journal.1284620 schema:issn 0101-8205
97 2238-3603
98 schema:name Computational and Applied Mathematics
99 rdf:type schema:Periodical
100 sg:person.010437742757.48 schema:affiliation N964414ca75284ed9b812abae4c19966c
101 schema:familyName Dey
102 schema:givenName Sanku
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010437742757.48
104 rdf:type schema:Person
105 sg:person.015343632713.90 schema:affiliation https://www.grid.ac/institutes/grid.271762.7
106 schema:familyName Mazucheli
107 schema:givenName Josmar
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015343632713.90
109 rdf:type schema:Person
110 sg:person.016342517733.01 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
111 schema:familyName Nadarajah
112 schema:givenName Saralees
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016342517733.01
114 rdf:type schema:Person
115 sg:pub.10.1007/s00362-011-0417-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1048228653
116 https://doi.org/10.1007/s00362-011-0417-y
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s00362-012-0432-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003230205
119 https://doi.org/10.1007/s00362-012-0432-7
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s00362-013-0526-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037943877
122 https://doi.org/10.1007/s00362-013-0526-x
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s10260-011-0183-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1027531174
125 https://doi.org/10.1007/s10260-011-0183-y
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s13571-011-0015-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1048713793
128 https://doi.org/10.1007/s13571-011-0015-y
129 rdf:type schema:CreativeWork
130 sg:pub.10.1080/15598608.2012.719814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029909360
131 https://doi.org/10.1080/15598608.2012.719814
132 rdf:type schema:CreativeWork
133 sg:pub.10.1186/2195-5832-1-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016182508
134 https://doi.org/10.1186/2195-5832-1-8
135 rdf:type schema:CreativeWork
136 sg:pub.10.1186/s40488-014-0017-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049831990
137 https://doi.org/10.1186/s40488-014-0017-1
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/cta.173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035065395
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/0022-1694(80)90036-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052686366
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.csda.2004.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019748287
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jfranklin.2010.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028719491
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.jhydrol.2007.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045956690
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.jspi.2007.03.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023868145
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.spl.2015.04.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030642276
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.stamet.2008.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013163122
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.stamet.2008.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011681931
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.stamet.2011.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028707091
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1080/00949650108812098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028283623
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1080/00949655.2010.511621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002358393
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1080/00949655.2012.683003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008442680
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1080/00949655.2012.706813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000419443
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1080/00949655.2012.745125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018109995
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1080/00949655.2012.750658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044400672
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1080/00949658808811068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012757663
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1080/01621459.1954.10501232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058299173
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1080/01621459.1974.10480196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058301281
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1080/01966324.2013.878676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045148911
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1080/02331888.2011.559657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009620609
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/biomet/63.1.161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418503
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1214/11-bjps149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064392508
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1214/aoms/1177729437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401678
186 rdf:type schema:CreativeWork
187 https://doi.org/10.14419/ijasp.v2i1.1729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067302147
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1515/eqc-2013-0006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030623250
190 rdf:type schema:CreativeWork
191 https://doi.org/10.15672/hjms.2014418153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068029858
192 rdf:type schema:CreativeWork
193 https://doi.org/10.18187/pjsor.v11i2.969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068577083
194 rdf:type schema:CreativeWork
195 https://doi.org/10.18187/pjsor.v8i3.520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068577311
196 rdf:type schema:CreativeWork
197 https://doi.org/10.2991/jsta.2013.12.2.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070961924
198 rdf:type schema:CreativeWork
199 https://doi.org/10.2991/jsta.2014.13.2.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070961956
200 rdf:type schema:CreativeWork
201 https://doi.org/10.4314/ijest.v3i9.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008613626
202 rdf:type schema:CreativeWork
203 https://www.grid.ac/institutes/grid.271762.7 schema:alternateName State University of Maringa
204 schema:name Universidade Estadual de Maringá, Maringá, Brazil
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.5379.8 schema:alternateName University of Manchester
207 schema:name University of Manchester, M13 9PL, Manchester, UK
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...