Inverse Problems in Graph Theory: Nets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

A. A. Makhnev, M. P. Golubyatnikov, Wenbin Guo

ABSTRACT

Let Γ be a distance-regular graph of diameter 3 with strong regular graph Γ3. The determination of the parameters Γ3 over the intersection array of the graph Γ is a direct problem. Finding an intersection array of the graph Γ with respect to the parameters Γ3 is an inverse problem. Previously, inverse problems were solved for Γ3 by Makhnev and Nirova. In this paper, we study the intersection arrays of distance-regular graph Γ of diameter 3, for which the graph Γ¯3 is a pseudo-geometric graph of the net PGm(n,m). New infinite series of admissible intersection arrays for these graphs are found. We also investigate the automorphisms of distance-regular graph with the intersection array {20,16,5;1,1,16}. More... »

PAGES

69-83

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40304-018-0159-4

DOI

http://dx.doi.org/10.1007/s40304-018-0159-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110481330


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Mathematics and Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.465287.a", 
          "name": [
            "Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Makhnev", 
        "givenName": "A. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ural Federal University", 
          "id": "https://www.grid.ac/institutes/grid.412761.7", 
          "name": [
            "Ural Federal University named after the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Golubyatnikov", 
        "givenName": "M. P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Science and Technology of China", 
          "id": "https://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "University of Science and Technology of China, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Wenbin", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1013855957", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-74341-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013855957", 
          "https://doi.org/10.1007/978-3-642-74341-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-74341-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013855957", 
          "https://doi.org/10.1007/978-3-642-74341-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0095-8956(71)90031-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018404537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejc.2010.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023417798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1064562410030282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037516787", 
          "https://doi.org/10.1134/s1064562410030282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1064562410030282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037516787", 
          "https://doi.org/10.1134/s1064562410030282"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Let \u0393 be a distance-regular graph of diameter 3 with strong regular graph \u03933. The determination of the parameters \u03933 over the intersection array of the graph \u0393 is a direct problem. Finding an intersection array of the graph \u0393 with respect to the parameters \u03933 is an inverse problem. Previously, inverse problems were solved for \u03933 by Makhnev and Nirova. In this paper, we study the intersection arrays of distance-regular graph \u0393 of diameter 3, for which the graph \u0393\u00af3 is a pseudo-geometric graph of the net PGm(n,m). New infinite series of admissible intersection arrays for these graphs are found. We also investigate the automorphisms of distance-regular graph with the intersection array {20,16,5;1,1,16}.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40304-018-0159-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052999", 
        "issn": [
          "2194-6701", 
          "2194-671X"
        ], 
        "name": "Communications in Mathematics and Statistics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Inverse Problems in Graph Theory: Nets", 
    "pagination": "69-83", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "49e323d83cbf83ca4f42242e81439416b15a6228881c37869d2e17cdde8dd66c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40304-018-0159-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110481330"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40304-018-0159-4", 
      "https://app.dimensions.ai/details/publication/pub.1110481330"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113664_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40304-018-0159-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40304-018-0159-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40304-018-0159-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40304-018-0159-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40304-018-0159-4'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40304-018-0159-4 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N147eea23ccf24acea00a7be57ebf2e12
4 schema:citation sg:pub.10.1007/978-3-642-74341-2
5 sg:pub.10.1134/s1064562410030282
6 https://app.dimensions.ai/details/publication/pub.1013855957
7 https://doi.org/10.1016/0095-8956(71)90031-1
8 https://doi.org/10.1016/j.ejc.2010.05.012
9 schema:datePublished 2019-03
10 schema:datePublishedReg 2019-03-01
11 schema:description Let Γ be a distance-regular graph of diameter 3 with strong regular graph Γ3. The determination of the parameters Γ3 over the intersection array of the graph Γ is a direct problem. Finding an intersection array of the graph Γ with respect to the parameters Γ3 is an inverse problem. Previously, inverse problems were solved for Γ3 by Makhnev and Nirova. In this paper, we study the intersection arrays of distance-regular graph Γ of diameter 3, for which the graph Γ¯3 is a pseudo-geometric graph of the net PGm(n,m). New infinite series of admissible intersection arrays for these graphs are found. We also investigate the automorphisms of distance-regular graph with the intersection array {20,16,5;1,1,16}.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf Nae86d9c6266f43008ab33cde2421c8f4
16 Naf0846a71ab14c19a5c4e0b592dedcd0
17 sg:journal.1052999
18 schema:name Inverse Problems in Graph Theory: Nets
19 schema:pagination 69-83
20 schema:productId N4e5401e8d1564fb0836c5cdc03a2a4e0
21 N6900081fd0df4bd5816056810d329494
22 Nf0eef7448d6c42cb977d9cbb626306a3
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110481330
24 https://doi.org/10.1007/s40304-018-0159-4
25 schema:sdDatePublished 2019-04-11T10:35
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nd90f57d86fbe4b41ad424e8fec11343a
28 schema:url https://link.springer.com/10.1007%2Fs40304-018-0159-4
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N147eea23ccf24acea00a7be57ebf2e12 rdf:first Ne2f495a2fea8428a81228fabe946e70f
33 rdf:rest N5bd666e9631c44cabe004f11ae663ee5
34 N4e5401e8d1564fb0836c5cdc03a2a4e0 schema:name dimensions_id
35 schema:value pub.1110481330
36 rdf:type schema:PropertyValue
37 N5bd666e9631c44cabe004f11ae663ee5 rdf:first Ne2142f7211324df694e681fd7e71757e
38 rdf:rest N74ebf33907fd4ffc8437c0f855776926
39 N6900081fd0df4bd5816056810d329494 schema:name doi
40 schema:value 10.1007/s40304-018-0159-4
41 rdf:type schema:PropertyValue
42 N74ebf33907fd4ffc8437c0f855776926 rdf:first N9191ec07eb41492297dc2694b42b40b6
43 rdf:rest rdf:nil
44 N9191ec07eb41492297dc2694b42b40b6 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
45 schema:familyName Guo
46 schema:givenName Wenbin
47 rdf:type schema:Person
48 Nae86d9c6266f43008ab33cde2421c8f4 schema:issueNumber 1
49 rdf:type schema:PublicationIssue
50 Naf0846a71ab14c19a5c4e0b592dedcd0 schema:volumeNumber 7
51 rdf:type schema:PublicationVolume
52 Nd90f57d86fbe4b41ad424e8fec11343a schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Ne2142f7211324df694e681fd7e71757e schema:affiliation https://www.grid.ac/institutes/grid.412761.7
55 schema:familyName Golubyatnikov
56 schema:givenName M. P.
57 rdf:type schema:Person
58 Ne2f495a2fea8428a81228fabe946e70f schema:affiliation https://www.grid.ac/institutes/grid.465287.a
59 schema:familyName Makhnev
60 schema:givenName A. A.
61 rdf:type schema:Person
62 Nf0eef7448d6c42cb977d9cbb626306a3 schema:name readcube_id
63 schema:value 49e323d83cbf83ca4f42242e81439416b15a6228881c37869d2e17cdde8dd66c
64 rdf:type schema:PropertyValue
65 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
66 schema:name Information and Computing Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
69 schema:name Computation Theory and Mathematics
70 rdf:type schema:DefinedTerm
71 sg:journal.1052999 schema:issn 2194-6701
72 2194-671X
73 schema:name Communications in Mathematics and Statistics
74 rdf:type schema:Periodical
75 sg:pub.10.1007/978-3-642-74341-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013855957
76 https://doi.org/10.1007/978-3-642-74341-2
77 rdf:type schema:CreativeWork
78 sg:pub.10.1134/s1064562410030282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037516787
79 https://doi.org/10.1134/s1064562410030282
80 rdf:type schema:CreativeWork
81 https://app.dimensions.ai/details/publication/pub.1013855957 schema:CreativeWork
82 https://doi.org/10.1016/0095-8956(71)90031-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018404537
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/j.ejc.2010.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023417798
85 rdf:type schema:CreativeWork
86 https://www.grid.ac/institutes/grid.412761.7 schema:alternateName Ural Federal University
87 schema:name Ural Federal University named after the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia
88 rdf:type schema:Organization
89 https://www.grid.ac/institutes/grid.465287.a schema:alternateName Institute of Mathematics and Mechanics
90 schema:name Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
91 rdf:type schema:Organization
92 https://www.grid.ac/institutes/grid.59053.3a schema:alternateName University of Science and Technology of China
93 schema:name University of Science and Technology of China, Hefei, China
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...