Artificial Intelligence Within Pharmacovigilance: A Means to Identify Cognitive Services and the Framework for Their Validation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-29

AUTHORS

Ruta Mockute, Sameen Desai, Sujan Perera, Bruno Assuncao, Karolina Danysz, Niki Tetarenko, Darpan Gaddam, Danielle Abatemarco, Mark Widdowson, Sheryl Beauchamp, Salvatore Cicirello, Edward Mingle

ABSTRACT

Pharmacovigilance (PV) detects, assesses, and prevents adverse events (AEs) and other drug-related problems by collecting, evaluating, and acting upon AEs. The volume of individual case safety reports (ICSRs) increases yearly, but it is estimated that more than 90% of AEs go unreported. In this landscape, embracing assistive technologies at scale becomes necessary to obtain a higher yield of AEs, to maintain compliance, and transform the PV professional work life. The aim of this study was to identify areas across the PV value chain that can be augmented by cognitive service solutions using the methodologies of contextual analysis and cognitive load theory. It will also provide a framework of how to validate these PV cognitive services leveraging the acceptable quality limit approach. The data used to train the cognitive service were an annotated corpus consisting of 20,000 ICSRS from which we developed a framework to identify and validate 40 cognitive services ranging from information extraction to complex decision making. This framework addresses the following shortcomings: (1) needing subject-matter expertise (SME) to match the artificial intelligence (AI) model predictions to the gold standard, commonly referred to as ‘ground truth’ in the AI space, (2) ground truth inconsistencies, (3) automated validation of prediction missing context, and (4) auto-labeling causing inaccurate test accuracy. The method consists of (1) conducting contextual analysis, (2) assessing human cognitive workload, (3) determining decision points for applying artificial intelligence (AI), (4) defining the scope of the data, or annotated corpus required for training and validation of the cognitive services, (5) identifying and standardizing PV knowledge elements, (6) developing cognitive services, and (7) reviewing and validating cognitive services. By applying the framework, we (1) identified 51 decision points as candidates for AI use, (2) standardized the process to make PV knowledge explicit, (3) embedded SMEs in the process to preserve PV knowledge and context, (4) standardized acceptability by using established quality inspection principles, and (5) validated a total of 126 cognitive services. The value of using AI methodologies in PV is compelling; however, as PV is highly regulated, acceptability will require assurances of quality, consistency, and standardization. We are proposing a foundational framework that the industry can use to identify and validate services to better support the gathering of quality data and to better serve the PV professional. More... »

PAGES

1-12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40290-019-00269-0

DOI

http://dx.doi.org/10.1007/s40290-019-00269-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113114860


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Celgene (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418722.a", 
          "name": [
            "Celgene Corporation, 86 Morris Avenue, 07901, Summit, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mockute", 
        "givenName": "Ruta", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Celgene (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418722.a", 
          "name": [
            "Celgene Corporation, 86 Morris Avenue, 07901, Summit, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Desai", 
        "givenName": "Sameen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Watson Health, Almaden Research Center, San Jose, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perera", 
        "givenName": "Sujan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Celgene (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418722.a", 
          "name": [
            "Celgene Corporation, 86 Morris Avenue, 07901, Summit, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Assuncao", 
        "givenName": "Bruno", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Celgene Corporation, Boudry, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Danysz", 
        "givenName": "Karolina", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Celgene (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418722.a", 
          "name": [
            "Celgene Corporation, 86 Morris Avenue, 07901, Summit, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tetarenko", 
        "givenName": "Niki", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Celgene (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418722.a", 
          "name": [
            "Celgene Corporation, 86 Morris Avenue, 07901, Summit, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaddam", 
        "givenName": "Darpan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Celgene (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418722.a", 
          "name": [
            "Celgene Corporation, 86 Morris Avenue, 07901, Summit, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abatemarco", 
        "givenName": "Danielle", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Celgene Corporation, Stockley Park, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Widdowson", 
        "givenName": "Mark", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Celgene (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418722.a", 
          "name": [
            "Celgene Corporation, 86 Morris Avenue, 07901, Summit, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beauchamp", 
        "givenName": "Sheryl", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Celgene Corporation, Boudry, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cicirello", 
        "givenName": "Salvatore", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Celgene (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418722.a", 
          "name": [
            "Celgene Corporation, 86 Morris Avenue, 07901, Summit, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mingle", 
        "givenName": "Edward", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1197/jamia.m3028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004459480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2015.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013720776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022193728205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017301245", 
          "https://doi.org/10.1023/a:1022193728205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.167.16.1752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024100922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinthera.2016.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036614011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinthera.2016.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036614011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007601113994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039483507", 
          "https://doi.org/10.1023/a:1007601113994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5731/pdajpst.2015.006189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073088328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40264-017-0558-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086124030", 
          "https://doi.org/10.1007/s40264-017-0558-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40264-017-0558-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086124030", 
          "https://doi.org/10.1007/s40264-017-0558-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40264-018-0699-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105776722", 
          "https://doi.org/10.1007/s40264-018-0699-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40264-018-0699-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105776722", 
          "https://doi.org/10.1007/s40264-018-0699-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40264-018-0699-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105776722", 
          "https://doi.org/10.1007/s40264-018-0699-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40290-018-0251-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107599888", 
          "https://doi.org/10.1007/s40290-018-0251-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40290-018-0251-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107599888", 
          "https://doi.org/10.1007/s40290-018-0251-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40290-018-0251-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107599888", 
          "https://doi.org/10.1007/s40290-018-0251-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-29", 
    "datePublishedReg": "2019-03-29", 
    "description": "Pharmacovigilance (PV) detects, assesses, and prevents adverse events (AEs) and other drug-related problems by collecting, evaluating, and acting upon AEs. The volume of individual case safety reports (ICSRs) increases yearly, but it is estimated that more than 90% of AEs go unreported. In this landscape, embracing assistive technologies at scale becomes necessary to obtain a higher yield of AEs, to maintain compliance, and transform the PV professional work life. The aim of this study was to identify areas across the PV value chain that can be augmented by cognitive service solutions using the methodologies of contextual analysis and cognitive load theory. It will also provide a framework of how to validate these PV cognitive services leveraging the acceptable quality limit approach. The data used to train the cognitive service were an annotated corpus consisting of 20,000 ICSRS from which we developed a framework to identify and validate 40 cognitive services ranging from information extraction to complex decision making. This framework addresses the following shortcomings: (1) needing subject-matter expertise (SME) to match the artificial intelligence (AI) model predictions to the gold standard, commonly referred to as \u2018ground truth\u2019 in the AI space, (2) ground truth inconsistencies, (3) automated validation of prediction missing context, and (4) auto-labeling causing inaccurate test accuracy. The method consists of (1) conducting contextual analysis, (2) assessing human cognitive workload, (3) determining decision points for applying artificial intelligence (AI), (4) defining the scope of the data, or annotated corpus required for training and validation of the cognitive services, (5) identifying and standardizing PV knowledge elements, (6) developing cognitive services, and (7) reviewing and validating cognitive services. By applying the framework, we (1) identified 51 decision points as candidates for AI use, (2) standardized the process to make PV knowledge explicit, (3) embedded SMEs in the process to preserve PV knowledge and context, (4) standardized acceptability by using established quality inspection principles, and (5) validated a total of 126 cognitive services. The value of using AI methodologies in PV is compelling; however, as PV is highly regulated, acceptability will require assurances of quality, consistency, and standardization. We are proposing a foundational framework that the industry can use to identify and validate services to better support the gathering of quality data and to better serve the PV professional.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40290-019-00269-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1319803", 
        "issn": [
          "1178-2595", 
          "1179-1993"
        ], 
        "name": "Pharmaceutical Medicine", 
        "type": "Periodical"
      }
    ], 
    "name": "Artificial Intelligence Within Pharmacovigilance: A Means to Identify Cognitive Services and the Framework for Their Validation", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c84058d02502ae375b0810b1fa2cef86e463f919df05aa73b9df663c6f1328be"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40290-019-00269-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113114860"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40290-019-00269-0", 
      "https://app.dimensions.ai/details/publication/pub.1113114860"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68975_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40290-019-00269-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40290-019-00269-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40290-019-00269-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40290-019-00269-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40290-019-00269-0'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      21 PREDICATES      34 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40290-019-00269-0 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb46ac5b42c71405f980af5a1133afee7
4 schema:citation sg:pub.10.1007/s40264-017-0558-6
5 sg:pub.10.1007/s40264-018-0699-2
6 sg:pub.10.1007/s40290-018-0251-9
7 sg:pub.10.1023/a:1007601113994
8 sg:pub.10.1023/a:1022193728205
9 https://doi.org/10.1001/archinte.167.16.1752
10 https://doi.org/10.1016/j.clinthera.2016.11.006
11 https://doi.org/10.1016/j.jbi.2015.02.004
12 https://doi.org/10.1197/jamia.m3028
13 https://doi.org/10.5731/pdajpst.2015.006189
14 schema:datePublished 2019-03-29
15 schema:datePublishedReg 2019-03-29
16 schema:description Pharmacovigilance (PV) detects, assesses, and prevents adverse events (AEs) and other drug-related problems by collecting, evaluating, and acting upon AEs. The volume of individual case safety reports (ICSRs) increases yearly, but it is estimated that more than 90% of AEs go unreported. In this landscape, embracing assistive technologies at scale becomes necessary to obtain a higher yield of AEs, to maintain compliance, and transform the PV professional work life. The aim of this study was to identify areas across the PV value chain that can be augmented by cognitive service solutions using the methodologies of contextual analysis and cognitive load theory. It will also provide a framework of how to validate these PV cognitive services leveraging the acceptable quality limit approach. The data used to train the cognitive service were an annotated corpus consisting of 20,000 ICSRS from which we developed a framework to identify and validate 40 cognitive services ranging from information extraction to complex decision making. This framework addresses the following shortcomings: (1) needing subject-matter expertise (SME) to match the artificial intelligence (AI) model predictions to the gold standard, commonly referred to as ‘ground truth’ in the AI space, (2) ground truth inconsistencies, (3) automated validation of prediction missing context, and (4) auto-labeling causing inaccurate test accuracy. The method consists of (1) conducting contextual analysis, (2) assessing human cognitive workload, (3) determining decision points for applying artificial intelligence (AI), (4) defining the scope of the data, or annotated corpus required for training and validation of the cognitive services, (5) identifying and standardizing PV knowledge elements, (6) developing cognitive services, and (7) reviewing and validating cognitive services. By applying the framework, we (1) identified 51 decision points as candidates for AI use, (2) standardized the process to make PV knowledge explicit, (3) embedded SMEs in the process to preserve PV knowledge and context, (4) standardized acceptability by using established quality inspection principles, and (5) validated a total of 126 cognitive services. The value of using AI methodologies in PV is compelling; however, as PV is highly regulated, acceptability will require assurances of quality, consistency, and standardization. We are proposing a foundational framework that the industry can use to identify and validate services to better support the gathering of quality data and to better serve the PV professional.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf sg:journal.1319803
21 schema:name Artificial Intelligence Within Pharmacovigilance: A Means to Identify Cognitive Services and the Framework for Their Validation
22 schema:pagination 1-12
23 schema:productId N01f4c1cf7f7f4e04b2bb5ab72a93c0b1
24 N26d8fda98a9c4f3ea4cf76680a78aefd
25 N944213a2064e4bf08a4f8b5e95419c31
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113114860
27 https://doi.org/10.1007/s40290-019-00269-0
28 schema:sdDatePublished 2019-04-11T13:25
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N82cc497e16e442da88eb9b39de06937b
31 schema:url https://link.springer.com/10.1007%2Fs40290-019-00269-0
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N01f4c1cf7f7f4e04b2bb5ab72a93c0b1 schema:name dimensions_id
36 schema:value pub.1113114860
37 rdf:type schema:PropertyValue
38 N21272e88f09043a0ba06c8091c0a9dfb rdf:first Na46fdd29efa24d2e934a508db4a2350b
39 rdf:rest N51ea57deaa5c464e9f9ec4fac01b7430
40 N26d8fda98a9c4f3ea4cf76680a78aefd schema:name doi
41 schema:value 10.1007/s40290-019-00269-0
42 rdf:type schema:PropertyValue
43 N397c301e015c4d0bae2e80430839cd36 schema:affiliation https://www.grid.ac/institutes/grid.418722.a
44 schema:familyName Mockute
45 schema:givenName Ruta
46 rdf:type schema:Person
47 N4622b7acac3b40f987557d7e8156d117 schema:name Celgene Corporation, Stockley Park, UK
48 rdf:type schema:Organization
49 N51ea57deaa5c464e9f9ec4fac01b7430 rdf:first Ne8d41335db67493eb90cc3cb3e871d49
50 rdf:rest N6ae3036e10ce4b6a8fa6952d6b100fc4
51 N58ffa2531b134f2abf58029a35d0ab33 schema:affiliation https://www.grid.ac/institutes/grid.418722.a
52 schema:familyName Mingle
53 schema:givenName Edward
54 rdf:type schema:Person
55 N6ae3036e10ce4b6a8fa6952d6b100fc4 rdf:first Nc08760bf4e83474687e422ec7139b338
56 rdf:rest Na2342bae0e0a40d0bcc69ef394bffe7b
57 N80996b0bce404f368a0bbfb941d53c4e rdf:first N982509b909844d3589ff84d806d74931
58 rdf:rest Nef07d18941bf4d49875ee6f5c009f9f5
59 N82cc497e16e442da88eb9b39de06937b schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N944213a2064e4bf08a4f8b5e95419c31 schema:name readcube_id
62 schema:value c84058d02502ae375b0810b1fa2cef86e463f919df05aa73b9df663c6f1328be
63 rdf:type schema:PropertyValue
64 N982509b909844d3589ff84d806d74931 schema:affiliation https://www.grid.ac/institutes/grid.418722.a
65 schema:familyName Abatemarco
66 schema:givenName Danielle
67 rdf:type schema:Person
68 Na2342bae0e0a40d0bcc69ef394bffe7b rdf:first Nd6b03a689cf64f2ab264db450d5cebdc
69 rdf:rest Nf08c7ec196c0451b8d39506ac9bbb250
70 Na3d61bbe61ea44e5bb36460dc4f35c08 rdf:first N58ffa2531b134f2abf58029a35d0ab33
71 rdf:rest rdf:nil
72 Na46fdd29efa24d2e934a508db4a2350b schema:affiliation https://www.grid.ac/institutes/grid.481551.c
73 schema:familyName Perera
74 schema:givenName Sujan
75 rdf:type schema:Person
76 Nabe82f5e1c744ed983061780ce0b48ac schema:name Celgene Corporation, Boudry, Switzerland
77 rdf:type schema:Organization
78 Nb46ac5b42c71405f980af5a1133afee7 rdf:first N397c301e015c4d0bae2e80430839cd36
79 rdf:rest Ne9764316be924440a4f9b10286e8915c
80 Nc08760bf4e83474687e422ec7139b338 schema:affiliation Nabe82f5e1c744ed983061780ce0b48ac
81 schema:familyName Danysz
82 schema:givenName Karolina
83 rdf:type schema:Person
84 Nc1214e81d6254ef39ea93fab37bc550a schema:name Celgene Corporation, Boudry, Switzerland
85 rdf:type schema:Organization
86 Nce5afab8f65e41e78a825345aa7ef020 schema:affiliation N4622b7acac3b40f987557d7e8156d117
87 schema:familyName Widdowson
88 schema:givenName Mark
89 rdf:type schema:Person
90 Nd6b03a689cf64f2ab264db450d5cebdc schema:affiliation https://www.grid.ac/institutes/grid.418722.a
91 schema:familyName Tetarenko
92 schema:givenName Niki
93 rdf:type schema:Person
94 Nd728ae6b12e048769af776cbb20b2bb7 schema:affiliation https://www.grid.ac/institutes/grid.418722.a
95 schema:familyName Gaddam
96 schema:givenName Darpan
97 rdf:type schema:Person
98 Ne0cf79f8f1674006b35252be2faac354 rdf:first Ne4b9379409244d96b294869ff12526b7
99 rdf:rest Nfd05a10d127d45e48f127163228fd83d
100 Ne4b9379409244d96b294869ff12526b7 schema:affiliation https://www.grid.ac/institutes/grid.418722.a
101 schema:familyName Beauchamp
102 schema:givenName Sheryl
103 rdf:type schema:Person
104 Ne7fd6827a48345f7b5ea368acc31a096 schema:affiliation Nc1214e81d6254ef39ea93fab37bc550a
105 schema:familyName Cicirello
106 schema:givenName Salvatore
107 rdf:type schema:Person
108 Ne8d41335db67493eb90cc3cb3e871d49 schema:affiliation https://www.grid.ac/institutes/grid.418722.a
109 schema:familyName Assuncao
110 schema:givenName Bruno
111 rdf:type schema:Person
112 Ne9764316be924440a4f9b10286e8915c rdf:first Nf12e665e1dea480ea6b7014762449c20
113 rdf:rest N21272e88f09043a0ba06c8091c0a9dfb
114 Nef07d18941bf4d49875ee6f5c009f9f5 rdf:first Nce5afab8f65e41e78a825345aa7ef020
115 rdf:rest Ne0cf79f8f1674006b35252be2faac354
116 Nf08c7ec196c0451b8d39506ac9bbb250 rdf:first Nd728ae6b12e048769af776cbb20b2bb7
117 rdf:rest N80996b0bce404f368a0bbfb941d53c4e
118 Nf12e665e1dea480ea6b7014762449c20 schema:affiliation https://www.grid.ac/institutes/grid.418722.a
119 schema:familyName Desai
120 schema:givenName Sameen
121 rdf:type schema:Person
122 Nfd05a10d127d45e48f127163228fd83d rdf:first Ne7fd6827a48345f7b5ea368acc31a096
123 rdf:rest Na3d61bbe61ea44e5bb36460dc4f35c08
124 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
125 schema:name Information and Computing Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
128 schema:name Artificial Intelligence and Image Processing
129 rdf:type schema:DefinedTerm
130 sg:journal.1319803 schema:issn 1178-2595
131 1179-1993
132 schema:name Pharmaceutical Medicine
133 rdf:type schema:Periodical
134 sg:pub.10.1007/s40264-017-0558-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086124030
135 https://doi.org/10.1007/s40264-017-0558-6
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s40264-018-0699-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105776722
138 https://doi.org/10.1007/s40264-018-0699-2
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s40290-018-0251-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107599888
141 https://doi.org/10.1007/s40290-018-0251-9
142 rdf:type schema:CreativeWork
143 sg:pub.10.1023/a:1007601113994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039483507
144 https://doi.org/10.1023/a:1007601113994
145 rdf:type schema:CreativeWork
146 sg:pub.10.1023/a:1022193728205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017301245
147 https://doi.org/10.1023/a:1022193728205
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1001/archinte.167.16.1752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024100922
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.clinthera.2016.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036614011
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.jbi.2015.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013720776
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1197/jamia.m3028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004459480
156 rdf:type schema:CreativeWork
157 https://doi.org/10.5731/pdajpst.2015.006189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073088328
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.418722.a schema:alternateName Celgene (United States)
160 schema:name Celgene Corporation, 86 Morris Avenue, 07901, Summit, NJ, USA
161 rdf:type schema:Organization
162 https://www.grid.ac/institutes/grid.481551.c schema:alternateName IBM Research - Almaden
163 schema:name IBM Watson Health, Almaden Research Center, San Jose, CA, USA
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...