Incorporating Future Medical Costs: Impact on Cost-Effectiveness Analysis in Cancer Patients View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-13

AUTHORS

Michelle Tew, Philip Clarke, Karin Thursky, Kim Dalziel

ABSTRACT

BackgroundThe inclusion of future medical costs in cost-effectiveness analyses remains a controversial issue. The impact of capturing future medical costs is likely to be particularly important in patients with cancer where costly lifelong medical care is necessary. The lack of clear, definitive pharmacoeconomic guidelines can limit comparability and has implications for decision making.ObjectiveThe aim of this study was to demonstrate the impact of incorporating future medical costs through an applied example using original data from a clinical study evaluating the cost effectiveness of a sepsis intervention in cancer patients.MethodsA decision analytic model was used to capture quality-adjusted life-years (QALYs) and lifetime costs of cancer patients from an Australian healthcare system perspective over a lifetime horizon. The evaluation considered three scenarios: (1) intervention-related costs (no future medical cost), (2) lifetime cancer costs and (3) all future healthcare costs. Inputs to the model included patient-level data from the clinical study, relative risk of death due to sepsis, cancer mortality and future medical costs sourced from published literature. All costs are expressed in 2017 Australian dollars and discounted at 5%. To further assess the impact of future costs on cancer heterogeneity, variation in survival and lifetime costs between cancer types and the implications for cost-effectiveness analysis were explored.ResultsThe inclusion of future medical costs increased incremental cost-effectiveness ratios (ICERs) resulting in a shift from the intervention being a dominant strategy (cheaper and more effective) to an ICER of $7526/QALY. Across different cancer types, longer life expectancies did not necessarily result in greater lifetime healthcare costs. Incremental costs differed across cancers depending on the respective costs of managing cancer and survivorship, thus resulting in variations in ICERs.ConclusionsThere is scope for including costs beyond intervention costs in economic evaluations. The inclusion of future medical costs can result in markedly different cost-effectiveness results, leading to higher ICERs in a cancer population, with possible implications for funding decisions. More... »

PAGES

931-941

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40273-019-00790-9

DOI

http://dx.doi.org/10.1007/s40273-019-00790-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112729514

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30864067


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Australia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cost-Benefit Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Decision Support Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Economics, Pharmaceutical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Care Costs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality-Adjusted Life Years", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sepsis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Centre for Infections in Cancer, Peter MacCallum Cancer Institute, Melbourne, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1055.1", 
          "name": [
            "Centre for Health Policy, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, 3053, Carlton, VIC, Australia", 
            "National Centre for Infections in Cancer, Peter MacCallum Cancer Institute, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tew", 
        "givenName": "Michelle", 
        "id": "sg:person.01323411761.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323411761.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Health Policy, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, 3053, Carlton, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "Centre for Health Policy, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, 3053, Carlton, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clarke", 
        "givenName": "Philip", 
        "id": "sg:person.0734456474.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734456474.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Centre for Antimicrobial Stewardship, Royal Melbourne Hospital, Melbourne, Australia", 
          "id": "http://www.grid.ac/institutes/grid.416153.4", 
          "name": [
            "National Centre for Infections in Cancer, Peter MacCallum Cancer Institute, Melbourne, Australia", 
            "National Centre for Antimicrobial Stewardship, Royal Melbourne Hospital, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thursky", 
        "givenName": "Karin", 
        "id": "sg:person.0615372331.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615372331.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Health Policy, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, 3053, Carlton, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "Centre for Health Policy, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, 3053, Carlton, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dalziel", 
        "givenName": "Kim", 
        "id": "sg:person.01356216720.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356216720.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00134-010-2102-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012516702", 
          "https://doi.org/10.1007/s00134-010-2102-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/11599390-000000000-00000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024392794", 
          "https://doi.org/10.2165/11599390-000000000-00000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/cc14056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014317162", 
          "https://doi.org/10.1186/cc14056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40273-018-0749-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110192327", 
          "https://doi.org/10.1007/s40273-018-0749-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/cc12616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020156558", 
          "https://doi.org/10.1186/cc12616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00019053-200826100-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035028692", 
          "https://doi.org/10.2165/00019053-200826100-00003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41669-018-0068-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101044261", 
          "https://doi.org/10.1007/s41669-018-0068-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00019053-200119110-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011251931", 
          "https://doi.org/10.2165/00019053-200119110-00004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12885-016-2835-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045777717", 
          "https://doi.org/10.1186/s12885-016-2835-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00019053-200826090-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024559595", 
          "https://doi.org/10.2165/00019053-200826090-00009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/11586130-000000000-00000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022677280", 
          "https://doi.org/10.2165/11586130-000000000-00000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1572-0241.2002.05483.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017344217", 
          "https://doi.org/10.1111/j.1572-0241.2002.05483.x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-13", 
    "datePublishedReg": "2019-03-13", 
    "description": "BackgroundThe inclusion of future medical costs in cost-effectiveness analyses remains a controversial issue. The impact of capturing future medical costs is likely to be particularly important in patients with cancer where costly lifelong medical care is necessary. The lack of clear, definitive pharmacoeconomic guidelines can limit comparability and has implications for decision making.ObjectiveThe aim of this study was to demonstrate the impact of incorporating future medical costs through an applied example using original data from a clinical study evaluating the cost effectiveness of a sepsis intervention in cancer patients.MethodsA decision analytic model was used to capture quality-adjusted life-years (QALYs) and lifetime costs of cancer patients from an Australian healthcare system perspective over a lifetime horizon. The evaluation considered three scenarios: (1) intervention-related costs (no future medical cost), (2) lifetime cancer costs and (3) all future healthcare costs. Inputs to the model included patient-level data from the clinical study, relative risk\u00a0of death due to sepsis, cancer mortality and future medical costs sourced from published literature. All costs are expressed in 2017 Australian dollars and discounted at 5%. To further assess the impact of future costs on cancer heterogeneity, variation in survival and lifetime costs between cancer types and the implications for cost-effectiveness analysis were explored.ResultsThe inclusion of future medical costs increased incremental cost-effectiveness ratios (ICERs) resulting in a shift from the intervention being a dominant strategy (cheaper and more effective) to an ICER of $7526/QALY. Across different cancer types, longer life expectancies did not necessarily result in greater lifetime healthcare costs. Incremental costs differed across cancers depending on the respective costs of managing cancer and survivorship, thus resulting in variations in ICERs.ConclusionsThere is scope for including costs beyond intervention costs in economic evaluations. The inclusion of future medical costs can result in markedly different cost-effectiveness results, leading to higher ICERs in a cancer population, with possible implications for funding decisions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40273-019-00790-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7878620", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7878632", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1102812", 
        "issn": [
          "1170-7690", 
          "1179-2027"
        ], 
        "name": "PharmacoEconomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "keywords": [
      "incremental cost-effectiveness ratio", 
      "cost-effectiveness analysis", 
      "future medical costs", 
      "medical costs", 
      "cancer patients", 
      "clinical studies", 
      "healthcare costs", 
      "cancer types", 
      "high incremental cost-effectiveness ratio", 
      "lifelong medical care", 
      "lifetime healthcare costs", 
      "lifetime costs", 
      "Australian healthcare system perspective", 
      "patient-level data", 
      "intervention-related costs", 
      "healthcare system perspective", 
      "cost-effectiveness ratio", 
      "decision analytic model", 
      "cost-effectiveness results", 
      "longer life expectancy", 
      "sepsis interventions", 
      "cancer mortality", 
      "cancer population", 
      "relative risk", 
      "different cancer types", 
      "cancer costs", 
      "lifetime horizon", 
      "future healthcare costs", 
      "patients", 
      "medical care", 
      "incremental cost", 
      "intervention costs", 
      "cancer", 
      "life expectancy", 
      "cancer heterogeneity", 
      "intervention", 
      "cost effectiveness", 
      "economic evaluation", 
      "sepsis", 
      "pharmacoeconomic guidelines", 
      "controversial issue", 
      "mortality", 
      "QALY", 
      "ConclusionsThere", 
      "study", 
      "care", 
      "Australian dollars", 
      "death", 
      "survival", 
      "possible implications", 
      "risk", 
      "evaluation", 
      "future costs", 
      "expectancy", 
      "guidelines", 
      "aim", 
      "population", 
      "dominant strategy", 
      "inclusion", 
      "funding decisions", 
      "survivorship", 
      "impact", 
      "respective costs", 
      "data", 
      "analysis", 
      "implications", 
      "types", 
      "lack", 
      "decision making", 
      "systems perspective", 
      "heterogeneity", 
      "comparability", 
      "literature", 
      "strategies", 
      "effectiveness", 
      "ratio", 
      "dollars", 
      "cost", 
      "results", 
      "model", 
      "variation", 
      "decisions", 
      "original data", 
      "analytic model", 
      "issues", 
      "perspective", 
      "making", 
      "shift", 
      "scope", 
      "input", 
      "scenarios", 
      "example", 
      "horizon", 
      "applied examples", 
      "costly lifelong medical care", 
      "definitive pharmacoeconomic guidelines", 
      "lifetime cancer costs", 
      "greater lifetime healthcare costs", 
      "different cost-effectiveness results"
    ], 
    "name": "Incorporating Future Medical Costs: Impact on Cost-Effectiveness Analysis in Cancer Patients", 
    "pagination": "931-941", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112729514"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40273-019-00790-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30864067"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40273-019-00790-9", 
      "https://app.dimensions.ai/details/publication/pub.1112729514"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_801.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40273-019-00790-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40273-019-00790-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40273-019-00790-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40273-019-00790-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40273-019-00790-9'


 

This table displays all metadata directly associated to this object as RDF triples.

286 TRIPLES      22 PREDICATES      148 URIs      126 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40273-019-00790-9 schema:about N27595e0d277c4c7fa3d8b77a4cce8bad
2 N5f4ff8d5c8054d9cb61843b76f6e4800
3 N643091eea4fb487b9e4e146f23ae26a7
4 N66cb84df3c46410588211c36acf58cda
5 N6e1ff539042f46a581daf35051de7b77
6 N831246a343f74b1bb09ad2e49bf470df
7 N9707fbfa1ed2405e81dca29795af5a50
8 Nf0cc74215c7a4709bf91fc39a56a9574
9 Nf58cd0c0b1a54b3e9c35f757cbb93336
10 anzsrc-for:11
11 anzsrc-for:1117
12 anzsrc-for:14
13 anzsrc-for:1402
14 schema:author Nb5bedfc628454e7bb4f1f34e1fac8b02
15 schema:citation sg:pub.10.1007/s00134-010-2102-3
16 sg:pub.10.1007/s40273-018-0749-8
17 sg:pub.10.1007/s41669-018-0068-1
18 sg:pub.10.1111/j.1572-0241.2002.05483.x
19 sg:pub.10.1186/cc12616
20 sg:pub.10.1186/cc14056
21 sg:pub.10.1186/s12885-016-2835-7
22 sg:pub.10.2165/00019053-200119110-00004
23 sg:pub.10.2165/00019053-200826090-00009
24 sg:pub.10.2165/00019053-200826100-00003
25 sg:pub.10.2165/11586130-000000000-00000
26 sg:pub.10.2165/11599390-000000000-00000
27 schema:datePublished 2019-03-13
28 schema:datePublishedReg 2019-03-13
29 schema:description BackgroundThe inclusion of future medical costs in cost-effectiveness analyses remains a controversial issue. The impact of capturing future medical costs is likely to be particularly important in patients with cancer where costly lifelong medical care is necessary. The lack of clear, definitive pharmacoeconomic guidelines can limit comparability and has implications for decision making.ObjectiveThe aim of this study was to demonstrate the impact of incorporating future medical costs through an applied example using original data from a clinical study evaluating the cost effectiveness of a sepsis intervention in cancer patients.MethodsA decision analytic model was used to capture quality-adjusted life-years (QALYs) and lifetime costs of cancer patients from an Australian healthcare system perspective over a lifetime horizon. The evaluation considered three scenarios: (1) intervention-related costs (no future medical cost), (2) lifetime cancer costs and (3) all future healthcare costs. Inputs to the model included patient-level data from the clinical study, relative risk of death due to sepsis, cancer mortality and future medical costs sourced from published literature. All costs are expressed in 2017 Australian dollars and discounted at 5%. To further assess the impact of future costs on cancer heterogeneity, variation in survival and lifetime costs between cancer types and the implications for cost-effectiveness analysis were explored.ResultsThe inclusion of future medical costs increased incremental cost-effectiveness ratios (ICERs) resulting in a shift from the intervention being a dominant strategy (cheaper and more effective) to an ICER of $7526/QALY. Across different cancer types, longer life expectancies did not necessarily result in greater lifetime healthcare costs. Incremental costs differed across cancers depending on the respective costs of managing cancer and survivorship, thus resulting in variations in ICERs.ConclusionsThere is scope for including costs beyond intervention costs in economic evaluations. The inclusion of future medical costs can result in markedly different cost-effectiveness results, leading to higher ICERs in a cancer population, with possible implications for funding decisions.
30 schema:genre article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N7ded189f58af4640a8de583e5dc12623
34 N8d41f3c6352c4d2495a16c4062563ee4
35 sg:journal.1102812
36 schema:keywords Australian dollars
37 Australian healthcare system perspective
38 ConclusionsThere
39 QALY
40 aim
41 analysis
42 analytic model
43 applied examples
44 cancer
45 cancer costs
46 cancer heterogeneity
47 cancer mortality
48 cancer patients
49 cancer population
50 cancer types
51 care
52 clinical studies
53 comparability
54 controversial issue
55 cost
56 cost effectiveness
57 cost-effectiveness analysis
58 cost-effectiveness ratio
59 cost-effectiveness results
60 costly lifelong medical care
61 data
62 death
63 decision analytic model
64 decision making
65 decisions
66 definitive pharmacoeconomic guidelines
67 different cancer types
68 different cost-effectiveness results
69 dollars
70 dominant strategy
71 economic evaluation
72 effectiveness
73 evaluation
74 example
75 expectancy
76 funding decisions
77 future costs
78 future healthcare costs
79 future medical costs
80 greater lifetime healthcare costs
81 guidelines
82 healthcare costs
83 healthcare system perspective
84 heterogeneity
85 high incremental cost-effectiveness ratio
86 horizon
87 impact
88 implications
89 inclusion
90 incremental cost
91 incremental cost-effectiveness ratio
92 input
93 intervention
94 intervention costs
95 intervention-related costs
96 issues
97 lack
98 life expectancy
99 lifelong medical care
100 lifetime cancer costs
101 lifetime costs
102 lifetime healthcare costs
103 lifetime horizon
104 literature
105 longer life expectancy
106 making
107 medical care
108 medical costs
109 model
110 mortality
111 original data
112 patient-level data
113 patients
114 perspective
115 pharmacoeconomic guidelines
116 population
117 possible implications
118 ratio
119 relative risk
120 respective costs
121 results
122 risk
123 scenarios
124 scope
125 sepsis
126 sepsis interventions
127 shift
128 strategies
129 study
130 survival
131 survivorship
132 systems perspective
133 types
134 variation
135 schema:name Incorporating Future Medical Costs: Impact on Cost-Effectiveness Analysis in Cancer Patients
136 schema:pagination 931-941
137 schema:productId N55799e9e0d5d49bfb68cfafab261780b
138 N5e8f941dc93441e4bdb6243399954292
139 N765ca6c6842c41c5b1ad4a0c809558be
140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112729514
141 https://doi.org/10.1007/s40273-019-00790-9
142 schema:sdDatePublished 2022-01-01T18:52
143 schema:sdLicense https://scigraph.springernature.com/explorer/license/
144 schema:sdPublisher Nb75143724cab404faef2b509d6342577
145 schema:url https://doi.org/10.1007/s40273-019-00790-9
146 sgo:license sg:explorer/license/
147 sgo:sdDataset articles
148 rdf:type schema:ScholarlyArticle
149 N27595e0d277c4c7fa3d8b77a4cce8bad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Health Care Costs
151 rdf:type schema:DefinedTerm
152 N55799e9e0d5d49bfb68cfafab261780b schema:name pubmed_id
153 schema:value 30864067
154 rdf:type schema:PropertyValue
155 N597cd7e1a0c94f119f4786ee57c0e911 rdf:first sg:person.0734456474.38
156 rdf:rest Nd7de6a2a406e48f6945315c01a060c58
157 N5e8f941dc93441e4bdb6243399954292 schema:name dimensions_id
158 schema:value pub.1112729514
159 rdf:type schema:PropertyValue
160 N5f4ff8d5c8054d9cb61843b76f6e4800 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Quality-Adjusted Life Years
162 rdf:type schema:DefinedTerm
163 N643091eea4fb487b9e4e146f23ae26a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Decision Support Techniques
165 rdf:type schema:DefinedTerm
166 N66cb84df3c46410588211c36acf58cda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Economics, Pharmaceutical
168 rdf:type schema:DefinedTerm
169 N6e1ff539042f46a581daf35051de7b77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Australia
171 rdf:type schema:DefinedTerm
172 N765ca6c6842c41c5b1ad4a0c809558be schema:name doi
173 schema:value 10.1007/s40273-019-00790-9
174 rdf:type schema:PropertyValue
175 N7ded189f58af4640a8de583e5dc12623 schema:issueNumber 7
176 rdf:type schema:PublicationIssue
177 N831246a343f74b1bb09ad2e49bf470df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Neoplasms
179 rdf:type schema:DefinedTerm
180 N8b26f4ad659945f2a07f60ca26cad89c rdf:first sg:person.01356216720.78
181 rdf:rest rdf:nil
182 N8d41f3c6352c4d2495a16c4062563ee4 schema:volumeNumber 37
183 rdf:type schema:PublicationVolume
184 N9707fbfa1ed2405e81dca29795af5a50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Sepsis
186 rdf:type schema:DefinedTerm
187 Nb5bedfc628454e7bb4f1f34e1fac8b02 rdf:first sg:person.01323411761.14
188 rdf:rest N597cd7e1a0c94f119f4786ee57c0e911
189 Nb75143724cab404faef2b509d6342577 schema:name Springer Nature - SN SciGraph project
190 rdf:type schema:Organization
191 Nd7de6a2a406e48f6945315c01a060c58 rdf:first sg:person.0615372331.81
192 rdf:rest N8b26f4ad659945f2a07f60ca26cad89c
193 Nf0cc74215c7a4709bf91fc39a56a9574 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Cost-Benefit Analysis
195 rdf:type schema:DefinedTerm
196 Nf58cd0c0b1a54b3e9c35f757cbb93336 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Humans
198 rdf:type schema:DefinedTerm
199 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
200 schema:name Medical and Health Sciences
201 rdf:type schema:DefinedTerm
202 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
203 schema:name Public Health and Health Services
204 rdf:type schema:DefinedTerm
205 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
206 schema:name Economics
207 rdf:type schema:DefinedTerm
208 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
209 schema:name Applied Economics
210 rdf:type schema:DefinedTerm
211 sg:grant.7878620 http://pending.schema.org/fundedItem sg:pub.10.1007/s40273-019-00790-9
212 rdf:type schema:MonetaryGrant
213 sg:grant.7878632 http://pending.schema.org/fundedItem sg:pub.10.1007/s40273-019-00790-9
214 rdf:type schema:MonetaryGrant
215 sg:journal.1102812 schema:issn 1170-7690
216 1179-2027
217 schema:name PharmacoEconomics
218 schema:publisher Springer Nature
219 rdf:type schema:Periodical
220 sg:person.01323411761.14 schema:affiliation grid-institutes:grid.1055.1
221 schema:familyName Tew
222 schema:givenName Michelle
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323411761.14
224 rdf:type schema:Person
225 sg:person.01356216720.78 schema:affiliation grid-institutes:grid.1008.9
226 schema:familyName Dalziel
227 schema:givenName Kim
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356216720.78
229 rdf:type schema:Person
230 sg:person.0615372331.81 schema:affiliation grid-institutes:grid.416153.4
231 schema:familyName Thursky
232 schema:givenName Karin
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615372331.81
234 rdf:type schema:Person
235 sg:person.0734456474.38 schema:affiliation grid-institutes:grid.1008.9
236 schema:familyName Clarke
237 schema:givenName Philip
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734456474.38
239 rdf:type schema:Person
240 sg:pub.10.1007/s00134-010-2102-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012516702
241 https://doi.org/10.1007/s00134-010-2102-3
242 rdf:type schema:CreativeWork
243 sg:pub.10.1007/s40273-018-0749-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110192327
244 https://doi.org/10.1007/s40273-018-0749-8
245 rdf:type schema:CreativeWork
246 sg:pub.10.1007/s41669-018-0068-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101044261
247 https://doi.org/10.1007/s41669-018-0068-1
248 rdf:type schema:CreativeWork
249 sg:pub.10.1111/j.1572-0241.2002.05483.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017344217
250 https://doi.org/10.1111/j.1572-0241.2002.05483.x
251 rdf:type schema:CreativeWork
252 sg:pub.10.1186/cc12616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020156558
253 https://doi.org/10.1186/cc12616
254 rdf:type schema:CreativeWork
255 sg:pub.10.1186/cc14056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014317162
256 https://doi.org/10.1186/cc14056
257 rdf:type schema:CreativeWork
258 sg:pub.10.1186/s12885-016-2835-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045777717
259 https://doi.org/10.1186/s12885-016-2835-7
260 rdf:type schema:CreativeWork
261 sg:pub.10.2165/00019053-200119110-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011251931
262 https://doi.org/10.2165/00019053-200119110-00004
263 rdf:type schema:CreativeWork
264 sg:pub.10.2165/00019053-200826090-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024559595
265 https://doi.org/10.2165/00019053-200826090-00009
266 rdf:type schema:CreativeWork
267 sg:pub.10.2165/00019053-200826100-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035028692
268 https://doi.org/10.2165/00019053-200826100-00003
269 rdf:type schema:CreativeWork
270 sg:pub.10.2165/11586130-000000000-00000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022677280
271 https://doi.org/10.2165/11586130-000000000-00000
272 rdf:type schema:CreativeWork
273 sg:pub.10.2165/11599390-000000000-00000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024392794
274 https://doi.org/10.2165/11599390-000000000-00000
275 rdf:type schema:CreativeWork
276 grid-institutes:grid.1008.9 schema:alternateName Centre for Health Policy, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, 3053, Carlton, VIC, Australia
277 schema:name Centre for Health Policy, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, 3053, Carlton, VIC, Australia
278 rdf:type schema:Organization
279 grid-institutes:grid.1055.1 schema:alternateName National Centre for Infections in Cancer, Peter MacCallum Cancer Institute, Melbourne, Australia
280 schema:name Centre for Health Policy, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, 3053, Carlton, VIC, Australia
281 National Centre for Infections in Cancer, Peter MacCallum Cancer Institute, Melbourne, Australia
282 rdf:type schema:Organization
283 grid-institutes:grid.416153.4 schema:alternateName National Centre for Antimicrobial Stewardship, Royal Melbourne Hospital, Melbourne, Australia
284 schema:name National Centre for Antimicrobial Stewardship, Royal Melbourne Hospital, Melbourne, Australia
285 National Centre for Infections in Cancer, Peter MacCallum Cancer Institute, Melbourne, Australia
286 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...