How Consistent is the Relationship between Improved Glucose Control and Modelled Health Outcomes for People with Type 2 Diabetes Mellitus? ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-11-21

AUTHORS

Xinyang Hua, Thomas Wai-Chun Lung, Andrew Palmer, Lei Si, William H. Herman, Philip Clarke

ABSTRACT

BACKGROUND: There are an increasing number of studies using simulation models to conduct cost-effectiveness analyses for type 2 diabetes mellitus. OBJECTIVE: To evaluate the relationship between improvements in glycosylated haemoglobin (HbA1c) and simulated health outcomes in type 2 diabetes cost-effectiveness studies. METHODS: A systematic review was conducted on MEDLINE and EMBASE to collect cost-effectiveness studies using type 2 diabetes simulation models that reported modelled health outcomes of blood glucose-related interventions in terms of quality-adjusted life-years (QALYs) or life expectancy (LE). The data extracted included information used to characterise the study cohort, the intervention's treatment effects on risk factors and model outcomes. Linear regressions were used to test the relationship between the difference in HbA1c (∆HbA1c) and incremental QALYs (∆QALYs) or LE (∆LE) of intervention and control groups. The ratio between the ∆QALYs and ∆LE was calculated and a scatterplot between the ratio and ∆HbA1c was used to explore the relationship between these two. RESULTS: Seventy-six studies were included in this research, contributing to 124 pair of comparators. The pooled regressions indicated that the marginal effect of a 1% HbA1c decrease in intervention resulted in an increase in life-time QALYs and LE of 0.371 (95% confidence interval 0.286-0.456) and 0.642 (95% CI 0.494-0.790), respectively. No evidence of heterogeneity between models was found. An inverse exponential relationship was found and fitted between the ratio (∆QALY/∆LE) and ∆HbA1c. CONCLUSION: There is a consistent relationship between ∆HbA1c and ∆QALYs or ∆LE in cost-effectiveness analyses using type 2 diabetes simulation models. This relationship can be used as a diagnostic tool for decision makers. More... »

PAGES

319-329

References to SciGraph publications

  • 2010-07. Cost effectiveness of insulin glargine plus oral antidiabetes drugs compared with premixed insulin alone in patients with type 2 diabetes mellitus in Canada in APPLIED HEALTH ECONOMICS AND HEALTH POLICY
  • 2012-03. Cost Effectiveness of Saxagliptin and Metformin versus Sulfonylurea and Metformin in the Treatment of Type 2 Diabetes Mellitus in Germany in CLINICAL DRUG INVESTIGATION
  • 2009-10-05. The consequences of delaying insulin initiation in UK type 2 diabetes patients failing oral hyperglycaemic agents: a modelling study in BMC ENDOCRINE DISORDERS
  • 2007-03. Therapy conversion to insulin detemir among patients with type 2 diabetes treated with oral agents: A modeling study of cost-effectiveness in the United States in ADVANCES IN THERAPY
  • 2010-10-12. Cost-effectiveness of biphasic insulin aspart versus insulin glargine in patients with type 2 diabetes in China in ADVANCES IN THERAPY
  • 2013-11-16. A Model-Based Economic Evaluation of Improved Primary Care Management of Patients with Type 2 Diabetes in Australia in APPLIED HEALTH ECONOMICS AND HEALTH POLICY
  • 2008-08-12. Cost-effectiveness of switching to biphasic insulin aspart in poorly-controlled type 2 diabetes patients in China in ADVANCES IN THERAPY
  • 2009-05-05. Cost-effectiveness of pioglitazone in type 2 diabetes patients with a history of macrovascular disease: a German perspective in COST EFFECTIVENESS AND RESOURCE ALLOCATION
  • 2014-09-22. Cost-effectiveness analysis of liraglutide versus sitagliptin or exenatide in patients with inadequately controlled Type 2 diabetes on oral antidiabetic drugs in Greece in BMC HEALTH SERVICES RESEARCH
  • 2013-04-27. Treatment of type 2 diabetes with saxagliptin: a pharmacoeconomic evaluation in Argentina in HEALTH ECONOMICS REVIEW
  • 2013-10-17. Incretin Therapy for Type 2 Diabetes in Spain: A Cost-Effectiveness Analysis of Liraglutide Versus Sitagliptin in DIABETES THERAPY
  • 2008-06-23. Evaluating the cost-effectiveness of therapy conversion to insulin detemir in patients with type 2 diabetes in Germany: a modelling study of long-term clinical and cost outcomes in ADVANCES IN THERAPY
  • 2007-07-19. Utilities and disutilities for type 2 diabetes treatment-related attributes in QUALITY OF LIFE RESEARCH
  • 2004-10-27. A model to estimate the lifetime health outcomes of patients with Type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model (UKPDS no. 68) in DIABETOLOGIA
  • 2011-11. Cost effectiveness of self-monitoring of blood glucose (SMBG) for patients with type 2 diabetes and not on insulin in APPLIED HEALTH ECONOMICS AND HEALTH POLICY
  • 2012-11-22. A UK Analysis of the Cost-Effectiveness of Humalog Mix75/25 and Mix50/50 Versus Long-Acting Basal Insulin in ADVANCES IN THERAPY
  • 2013-12-20. Review of Models Used in Economic Analyses of New Oral Treatments for Type 2 Diabetes Mellitus in PHARMACOECONOMICS
  • 2013-11-16. Cost Effectiveness of Adding Dapagliflozin to Insulin for the Treatment of Type 2 Diabetes Mellitus in the Netherlands in CLINICAL DRUG INVESTIGATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40273-016-0466-0

    DOI

    http://dx.doi.org/10.1007/s40273-016-0466-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007355904

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27873225


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Blood Glucose", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cost-Benefit Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Diabetes Mellitus, Type 2", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glycated Hemoglobin A", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hypoglycemic Agents", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Linear Models", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Economic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quality-Adjusted Life Years", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Risk Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Population and Global Health, University of Melbourne, Level 4, 207 Bouverie Street, Carlton, VIC 3053 Australia", 
              "id": "http://www.grid.ac/institutes/grid.1008.9", 
              "name": [
                "School of Population and Global Health, University of Melbourne, Level 4, 207 Bouverie Street, Carlton, VIC 3053 Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hua", 
            "givenName": "Xinyang", 
            "id": "sg:person.013416400227.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013416400227.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The George Institute for Global Health, University of Sydney, Lidcombe, NSW Australia", 
              "id": "http://www.grid.ac/institutes/grid.415508.d", 
              "name": [
                "School of Population and Global Health, University of Melbourne, Level 4, 207 Bouverie Street, Carlton, VIC 3053 Australia", 
                "The George Institute for Global Health, University of Sydney, Lidcombe, NSW Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lung", 
            "givenName": "Thomas Wai-Chun", 
            "id": "sg:person.011226670251.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011226670251.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Menzies Research Institute, University of Tasmania, Hobart, TAS Australia", 
              "id": "http://www.grid.ac/institutes/grid.1009.8", 
              "name": [
                "Menzies Research Institute, University of Tasmania, Hobart, TAS Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Palmer", 
            "givenName": "Andrew", 
            "id": "sg:person.016365444152.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016365444152.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Menzies Research Institute, University of Tasmania, Hobart, TAS Australia", 
              "id": "http://www.grid.ac/institutes/grid.1009.8", 
              "name": [
                "Menzies Research Institute, University of Tasmania, Hobart, TAS Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Si", 
            "givenName": "Lei", 
            "id": "sg:person.0764530247.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764530247.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Public Health, University of Michigan, Ann Arbor, MI USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "School of Public Health, University of Michigan, Ann Arbor, MI USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Herman", 
            "givenName": "William H.", 
            "id": "sg:person.01060410744.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060410744.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Population and Global Health, University of Melbourne, Level 4, 207 Bouverie Street, Carlton, VIC 3053 Australia", 
              "id": "http://www.grid.ac/institutes/grid.1008.9", 
              "name": [
                "School of Population and Global Health, University of Melbourne, Level 4, 207 Bouverie Street, Carlton, VIC 3053 Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Clarke", 
            "givenName": "Philip", 
            "id": "sg:person.0734456474.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734456474.38"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.2165/11535380-000000000-00000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020237720", 
              "https://doi.org/10.2165/11535380-000000000-00000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12325-010-0078-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004178006", 
              "https://doi.org/10.1007/s12325-010-0078-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2165/11597060-000000000-00000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033801058", 
              "https://doi.org/10.2165/11597060-000000000-00000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1472-6823-9-19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034464838", 
              "https://doi.org/10.1186/1472-6823-9-19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2191-1991-3-11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049529295", 
              "https://doi.org/10.1186/2191-1991-3-11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40261-013-0155-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051450610", 
              "https://doi.org/10.1007/s40261-013-0155-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02849895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020903184", 
              "https://doi.org/10.1007/bf02849895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40258-013-0062-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043472141", 
              "https://doi.org/10.1007/s40258-013-0062-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40273-013-0117-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006691516", 
              "https://doi.org/10.1007/s40273-013-0117-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11136-007-9226-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029076960", 
              "https://doi.org/10.1007/s11136-007-9226-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1478-7547-7-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019001334", 
              "https://doi.org/10.1186/1478-7547-7-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2165/11594270-000000000-00000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050285698", 
              "https://doi.org/10.2165/11594270-000000000-00000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13300-013-0044-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003457712", 
              "https://doi.org/10.1007/s13300-013-0044-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12325-012-0065-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006980275", 
              "https://doi.org/10.1007/s12325-012-0065-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12325-008-0080-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049888229", 
              "https://doi.org/10.1007/s12325-008-0080-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00125-004-1527-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036304902", 
              "https://doi.org/10.1007/s00125-004-1527-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12325-008-0069-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008972102", 
              "https://doi.org/10.1007/s12325-008-0069-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1472-6963-14-419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019749773", 
              "https://doi.org/10.1186/1472-6963-14-419"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-11-21", 
        "datePublishedReg": "2016-11-21", 
        "description": "BACKGROUND: There are an increasing number of studies using simulation models to conduct cost-effectiveness analyses for type 2 diabetes mellitus.\nOBJECTIVE: To evaluate the relationship between improvements in glycosylated haemoglobin (HbA1c) and simulated health outcomes in type 2 diabetes cost-effectiveness studies.\nMETHODS: A systematic review was conducted on MEDLINE and EMBASE to collect cost-effectiveness studies using type 2 diabetes simulation models that reported modelled health outcomes of blood glucose-related interventions in terms of quality-adjusted life-years (QALYs) or life expectancy (LE). The data extracted included information used to characterise the study cohort, the intervention's treatment effects on risk factors and model outcomes. Linear regressions were used to test the relationship between the difference in HbA1c (\u2206HbA1c) and incremental QALYs (\u2206QALYs) or LE (\u2206LE) of intervention and control groups. The ratio between the \u2206QALYs and \u2206LE was calculated and a scatterplot between the ratio and \u2206HbA1c was used to explore the relationship between these two.\nRESULTS: Seventy-six studies were included in this research, contributing to 124 pair of comparators. The pooled regressions indicated that the marginal effect of a 1% HbA1c decrease in intervention resulted in an increase in life-time QALYs and LE of 0.371 (95% confidence interval 0.286-0.456) and 0.642 (95% CI 0.494-0.790), respectively. No evidence of heterogeneity between models was found. An inverse exponential relationship was found and fitted between the ratio (\u2206QALY/\u2206LE) and \u2206HbA1c.\nCONCLUSION: There is a consistent relationship between \u2206HbA1c and \u2206QALYs or \u2206LE in cost-effectiveness analyses using type 2 diabetes simulation models. This relationship can be used as a diagnostic tool for decision makers.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s40273-016-0466-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2439066", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7876485", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7876120", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1102812", 
            "issn": [
              "1170-7690", 
              "1179-2027"
            ], 
            "name": "PharmacoEconomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "35"
          }
        ], 
        "keywords": [
          "diabetes simulation model", 
          "cost-effectiveness studies", 
          "cost-effectiveness analysis", 
          "health outcomes", 
          "life expectancy", 
          "systematic review", 
          "type 2 diabetes mellitus", 
          "improved glucose control", 
          "treatment effects", 
          "evidence of heterogeneity", 
          "diabetes mellitus", 
          "study cohort", 
          "glucose control", 
          "risk factors", 
          "incremental QALYs", 
          "control group", 
          "type 2", 
          "mellitus", 
          "outcomes", 
          "diagnostic tool", 
          "intervention", 
          "number of studies", 
          "linear regression", 
          "EMBASE", 
          "review", 
          "regression", 
          "MEDLINE", 
          "cohort", 
          "HbA", 
          "QALY", 
          "consistent relationship", 
          "study", 
          "inverse exponential relationship", 
          "QALYs", 
          "hemoglobin", 
          "expectancy", 
          "marginal effect", 
          "effect", 
          "group", 
          "relationship", 
          "evidence", 
          "ratio", 
          "factors", 
          "decrease", 
          "differences", 
          "control", 
          "comparator", 
          "increase", 
          "analysis", 
          "improvement", 
          "heterogeneity", 
          "people", 
          "model outcomes", 
          "data", 
          "model", 
          "number", 
          "pair of comparators", 
          "information", 
          "tool", 
          "scatterplots", 
          "research", 
          "terms", 
          "exponential relationship", 
          "makers", 
          "pairs", 
          "decision makers", 
          "simulation model", 
          "type 2 diabetes cost-effectiveness studies", 
          "diabetes cost-effectiveness studies", 
          "type 2 diabetes simulation models", 
          "blood glucose-related interventions", 
          "glucose-related interventions", 
          "intervention's treatment effects", 
          "LE (\u2206LE) of intervention", 
          "life-time QALYs", 
          "Modelled Health Outcomes"
        ], 
        "name": "How Consistent is the Relationship between Improved Glucose Control and Modelled Health Outcomes for People with Type 2 Diabetes Mellitus? a Systematic Review", 
        "pagination": "319-329", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007355904"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40273-016-0466-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27873225"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40273-016-0466-0", 
          "https://app.dimensions.ai/details/publication/pub.1007355904"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_693.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s40273-016-0466-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40273-016-0466-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40273-016-0466-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40273-016-0466-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40273-016-0466-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    309 TRIPLES      22 PREDICATES      132 URIs      105 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40273-016-0466-0 schema:about N23cb81e6437546d7a0a165634fab36dd
    2 N2c6b9c826b924c7c99f270a7bb96142d
    3 N35f78b46dbae4239a14b55568ef448e1
    4 N3d21d3166ecf4e148ce9a8ab197fdf4c
    5 N3db1ea4ad36b48f8981b062c930dcb7b
    6 N7c6e7917f5544f3792e081a34a08c68a
    7 Nba55f7dcb6bd4dbf85543003d8b039cd
    8 Nc875786ec1d740639c8b36c231da67c4
    9 Nf64ee1fe70994325ba90590e1e264855
    10 Nfbe02df27f164fd784983978efd21a8d
    11 Nfd88de574b204c65ab4f2cc42f251432
    12 anzsrc-for:11
    13 anzsrc-for:1103
    14 anzsrc-for:1117
    15 schema:author N6b2de94bc1e94d87874176cf206301ab
    16 schema:citation sg:pub.10.1007/bf02849895
    17 sg:pub.10.1007/s00125-004-1527-z
    18 sg:pub.10.1007/s11136-007-9226-0
    19 sg:pub.10.1007/s12325-008-0069-z
    20 sg:pub.10.1007/s12325-008-0080-4
    21 sg:pub.10.1007/s12325-010-0078-6
    22 sg:pub.10.1007/s12325-012-0065-1
    23 sg:pub.10.1007/s13300-013-0044-9
    24 sg:pub.10.1007/s40258-013-0062-9
    25 sg:pub.10.1007/s40261-013-0155-0
    26 sg:pub.10.1007/s40273-013-0117-7
    27 sg:pub.10.1186/1472-6823-9-19
    28 sg:pub.10.1186/1472-6963-14-419
    29 sg:pub.10.1186/1478-7547-7-9
    30 sg:pub.10.1186/2191-1991-3-11
    31 sg:pub.10.2165/11535380-000000000-00000
    32 sg:pub.10.2165/11594270-000000000-00000
    33 sg:pub.10.2165/11597060-000000000-00000
    34 schema:datePublished 2016-11-21
    35 schema:datePublishedReg 2016-11-21
    36 schema:description BACKGROUND: There are an increasing number of studies using simulation models to conduct cost-effectiveness analyses for type 2 diabetes mellitus. OBJECTIVE: To evaluate the relationship between improvements in glycosylated haemoglobin (HbA<sub>1c</sub>) and simulated health outcomes in type 2 diabetes cost-effectiveness studies. METHODS: A systematic review was conducted on MEDLINE and EMBASE to collect cost-effectiveness studies using type 2 diabetes simulation models that reported modelled health outcomes of blood glucose-related interventions in terms of quality-adjusted life-years (QALYs) or life expectancy (LE). The data extracted included information used to characterise the study cohort, the intervention's treatment effects on risk factors and model outcomes. Linear regressions were used to test the relationship between the difference in HbA<sub>1c</sub> (∆HbA<sub>1c</sub>) and incremental QALYs (∆QALYs) or LE (∆LE) of intervention and control groups. The ratio between the ∆QALYs and ∆LE was calculated and a scatterplot between the ratio and ∆HbA<sub>1c</sub> was used to explore the relationship between these two. RESULTS: Seventy-six studies were included in this research, contributing to 124 pair of comparators. The pooled regressions indicated that the marginal effect of a 1% HbA<sub>1c</sub> decrease in intervention resulted in an increase in life-time QALYs and LE of 0.371 (95% confidence interval 0.286-0.456) and 0.642 (95% CI 0.494-0.790), respectively. No evidence of heterogeneity between models was found. An inverse exponential relationship was found and fitted between the ratio (∆QALY/∆LE) and ∆HbA<sub>1c</sub>. CONCLUSION: There is a consistent relationship between ∆HbA<sub>1c</sub> and ∆QALYs or ∆LE in cost-effectiveness analyses using type 2 diabetes simulation models. This relationship can be used as a diagnostic tool for decision makers.
    37 schema:genre article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree true
    40 schema:isPartOf N58476f651fb241c8b211cd91c61575fb
    41 Nd3bdff9a900444b5987c46ddbfc566c0
    42 sg:journal.1102812
    43 schema:keywords EMBASE
    44 HbA
    45 LE (∆LE) of intervention
    46 MEDLINE
    47 Modelled Health Outcomes
    48 QALY
    49 QALYs
    50 analysis
    51 blood glucose-related interventions
    52 cohort
    53 comparator
    54 consistent relationship
    55 control
    56 control group
    57 cost-effectiveness analysis
    58 cost-effectiveness studies
    59 data
    60 decision makers
    61 decrease
    62 diabetes cost-effectiveness studies
    63 diabetes mellitus
    64 diabetes simulation model
    65 diagnostic tool
    66 differences
    67 effect
    68 evidence
    69 evidence of heterogeneity
    70 expectancy
    71 exponential relationship
    72 factors
    73 glucose control
    74 glucose-related interventions
    75 group
    76 health outcomes
    77 hemoglobin
    78 heterogeneity
    79 improved glucose control
    80 improvement
    81 increase
    82 incremental QALYs
    83 information
    84 intervention
    85 intervention's treatment effects
    86 inverse exponential relationship
    87 life expectancy
    88 life-time QALYs
    89 linear regression
    90 makers
    91 marginal effect
    92 mellitus
    93 model
    94 model outcomes
    95 number
    96 number of studies
    97 outcomes
    98 pair of comparators
    99 pairs
    100 people
    101 ratio
    102 regression
    103 relationship
    104 research
    105 review
    106 risk factors
    107 scatterplots
    108 simulation model
    109 study
    110 study cohort
    111 systematic review
    112 terms
    113 tool
    114 treatment effects
    115 type 2
    116 type 2 diabetes cost-effectiveness studies
    117 type 2 diabetes mellitus
    118 type 2 diabetes simulation models
    119 schema:name How Consistent is the Relationship between Improved Glucose Control and Modelled Health Outcomes for People with Type 2 Diabetes Mellitus? a Systematic Review
    120 schema:pagination 319-329
    121 schema:productId N1f5649c49cf2409487ed776057a7eae7
    122 N589a46f9e7fd47999fdcda1e87e105ca
    123 Nc9e54fbeaa084174a0c7d1d17fe4c5c3
    124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007355904
    125 https://doi.org/10.1007/s40273-016-0466-0
    126 schema:sdDatePublished 2022-01-01T18:39
    127 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    128 schema:sdPublisher N039b3ec7a2ac4741b2047c4e1545c320
    129 schema:url https://doi.org/10.1007/s40273-016-0466-0
    130 sgo:license sg:explorer/license/
    131 sgo:sdDataset articles
    132 rdf:type schema:ScholarlyArticle
    133 N039b3ec7a2ac4741b2047c4e1545c320 schema:name Springer Nature - SN SciGraph project
    134 rdf:type schema:Organization
    135 N04c72d226b3e4eeaa170311c5e19b2bc rdf:first sg:person.0764530247.06
    136 rdf:rest N99b3878ccfa147e9b31c8fad5c7be653
    137 N1c45996d13d54c09a3d05fccb09fc600 rdf:first sg:person.016365444152.23
    138 rdf:rest N04c72d226b3e4eeaa170311c5e19b2bc
    139 N1f5649c49cf2409487ed776057a7eae7 schema:name doi
    140 schema:value 10.1007/s40273-016-0466-0
    141 rdf:type schema:PropertyValue
    142 N23cb81e6437546d7a0a165634fab36dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Humans
    144 rdf:type schema:DefinedTerm
    145 N2c6b9c826b924c7c99f270a7bb96142d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Glycated Hemoglobin A
    147 rdf:type schema:DefinedTerm
    148 N35f78b46dbae4239a14b55568ef448e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Hypoglycemic Agents
    150 rdf:type schema:DefinedTerm
    151 N3d21d3166ecf4e148ce9a8ab197fdf4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Cost-Benefit Analysis
    153 rdf:type schema:DefinedTerm
    154 N3db1ea4ad36b48f8981b062c930dcb7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Risk Factors
    156 rdf:type schema:DefinedTerm
    157 N58476f651fb241c8b211cd91c61575fb schema:issueNumber 3
    158 rdf:type schema:PublicationIssue
    159 N589a46f9e7fd47999fdcda1e87e105ca schema:name pubmed_id
    160 schema:value 27873225
    161 rdf:type schema:PropertyValue
    162 N6b2de94bc1e94d87874176cf206301ab rdf:first sg:person.013416400227.26
    163 rdf:rest Nb83e5eaaa6904915a2d40cfe2a41d11a
    164 N7c6e7917f5544f3792e081a34a08c68a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Linear Models
    166 rdf:type schema:DefinedTerm
    167 N99b3878ccfa147e9b31c8fad5c7be653 rdf:first sg:person.01060410744.08
    168 rdf:rest Nc46cdb26d85e4b4e98bc19272afdc511
    169 Nb83e5eaaa6904915a2d40cfe2a41d11a rdf:first sg:person.011226670251.22
    170 rdf:rest N1c45996d13d54c09a3d05fccb09fc600
    171 Nba55f7dcb6bd4dbf85543003d8b039cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Computer Simulation
    173 rdf:type schema:DefinedTerm
    174 Nc46cdb26d85e4b4e98bc19272afdc511 rdf:first sg:person.0734456474.38
    175 rdf:rest rdf:nil
    176 Nc875786ec1d740639c8b36c231da67c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Quality-Adjusted Life Years
    178 rdf:type schema:DefinedTerm
    179 Nc9e54fbeaa084174a0c7d1d17fe4c5c3 schema:name dimensions_id
    180 schema:value pub.1007355904
    181 rdf:type schema:PropertyValue
    182 Nd3bdff9a900444b5987c46ddbfc566c0 schema:volumeNumber 35
    183 rdf:type schema:PublicationVolume
    184 Nf64ee1fe70994325ba90590e1e264855 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Models, Economic
    186 rdf:type schema:DefinedTerm
    187 Nfbe02df27f164fd784983978efd21a8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Diabetes Mellitus, Type 2
    189 rdf:type schema:DefinedTerm
    190 Nfd88de574b204c65ab4f2cc42f251432 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Blood Glucose
    192 rdf:type schema:DefinedTerm
    193 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    194 schema:name Medical and Health Sciences
    195 rdf:type schema:DefinedTerm
    196 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    197 schema:name Clinical Sciences
    198 rdf:type schema:DefinedTerm
    199 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    200 schema:name Public Health and Health Services
    201 rdf:type schema:DefinedTerm
    202 sg:grant.2439066 http://pending.schema.org/fundedItem sg:pub.10.1007/s40273-016-0466-0
    203 rdf:type schema:MonetaryGrant
    204 sg:grant.7876120 http://pending.schema.org/fundedItem sg:pub.10.1007/s40273-016-0466-0
    205 rdf:type schema:MonetaryGrant
    206 sg:grant.7876485 http://pending.schema.org/fundedItem sg:pub.10.1007/s40273-016-0466-0
    207 rdf:type schema:MonetaryGrant
    208 sg:journal.1102812 schema:issn 1170-7690
    209 1179-2027
    210 schema:name PharmacoEconomics
    211 schema:publisher Springer Nature
    212 rdf:type schema:Periodical
    213 sg:person.01060410744.08 schema:affiliation grid-institutes:grid.214458.e
    214 schema:familyName Herman
    215 schema:givenName William H.
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060410744.08
    217 rdf:type schema:Person
    218 sg:person.011226670251.22 schema:affiliation grid-institutes:grid.415508.d
    219 schema:familyName Lung
    220 schema:givenName Thomas Wai-Chun
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011226670251.22
    222 rdf:type schema:Person
    223 sg:person.013416400227.26 schema:affiliation grid-institutes:grid.1008.9
    224 schema:familyName Hua
    225 schema:givenName Xinyang
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013416400227.26
    227 rdf:type schema:Person
    228 sg:person.016365444152.23 schema:affiliation grid-institutes:grid.1009.8
    229 schema:familyName Palmer
    230 schema:givenName Andrew
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016365444152.23
    232 rdf:type schema:Person
    233 sg:person.0734456474.38 schema:affiliation grid-institutes:grid.1008.9
    234 schema:familyName Clarke
    235 schema:givenName Philip
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734456474.38
    237 rdf:type schema:Person
    238 sg:person.0764530247.06 schema:affiliation grid-institutes:grid.1009.8
    239 schema:familyName Si
    240 schema:givenName Lei
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764530247.06
    242 rdf:type schema:Person
    243 sg:pub.10.1007/bf02849895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020903184
    244 https://doi.org/10.1007/bf02849895
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1007/s00125-004-1527-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1036304902
    247 https://doi.org/10.1007/s00125-004-1527-z
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/s11136-007-9226-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029076960
    250 https://doi.org/10.1007/s11136-007-9226-0
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1007/s12325-008-0069-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1008972102
    253 https://doi.org/10.1007/s12325-008-0069-z
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1007/s12325-008-0080-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049888229
    256 https://doi.org/10.1007/s12325-008-0080-4
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1007/s12325-010-0078-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004178006
    259 https://doi.org/10.1007/s12325-010-0078-6
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1007/s12325-012-0065-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006980275
    262 https://doi.org/10.1007/s12325-012-0065-1
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1007/s13300-013-0044-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003457712
    265 https://doi.org/10.1007/s13300-013-0044-9
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1007/s40258-013-0062-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043472141
    268 https://doi.org/10.1007/s40258-013-0062-9
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1007/s40261-013-0155-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051450610
    271 https://doi.org/10.1007/s40261-013-0155-0
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1007/s40273-013-0117-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006691516
    274 https://doi.org/10.1007/s40273-013-0117-7
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1186/1472-6823-9-19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034464838
    277 https://doi.org/10.1186/1472-6823-9-19
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1186/1472-6963-14-419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019749773
    280 https://doi.org/10.1186/1472-6963-14-419
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1186/1478-7547-7-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019001334
    283 https://doi.org/10.1186/1478-7547-7-9
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1186/2191-1991-3-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049529295
    286 https://doi.org/10.1186/2191-1991-3-11
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.2165/11535380-000000000-00000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020237720
    289 https://doi.org/10.2165/11535380-000000000-00000
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.2165/11594270-000000000-00000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050285698
    292 https://doi.org/10.2165/11594270-000000000-00000
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.2165/11597060-000000000-00000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033801058
    295 https://doi.org/10.2165/11597060-000000000-00000
    296 rdf:type schema:CreativeWork
    297 grid-institutes:grid.1008.9 schema:alternateName School of Population and Global Health, University of Melbourne, Level 4, 207 Bouverie Street, Carlton, VIC 3053 Australia
    298 schema:name School of Population and Global Health, University of Melbourne, Level 4, 207 Bouverie Street, Carlton, VIC 3053 Australia
    299 rdf:type schema:Organization
    300 grid-institutes:grid.1009.8 schema:alternateName Menzies Research Institute, University of Tasmania, Hobart, TAS Australia
    301 schema:name Menzies Research Institute, University of Tasmania, Hobart, TAS Australia
    302 rdf:type schema:Organization
    303 grid-institutes:grid.214458.e schema:alternateName School of Public Health, University of Michigan, Ann Arbor, MI USA
    304 schema:name School of Public Health, University of Michigan, Ann Arbor, MI USA
    305 rdf:type schema:Organization
    306 grid-institutes:grid.415508.d schema:alternateName The George Institute for Global Health, University of Sydney, Lidcombe, NSW Australia
    307 schema:name School of Population and Global Health, University of Melbourne, Level 4, 207 Bouverie Street, Carlton, VIC 3053 Australia
    308 The George Institute for Global Health, University of Sydney, Lidcombe, NSW Australia
    309 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...