Simulating Lifetime Outcomes Associated with Complications for People with Type 1 Diabetes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-04-13

AUTHORS

Tom W. C. Lung, Philip M. Clarke, Alison J. Hayes, Richard J. Stevens, Andrew Farmer

ABSTRACT

ObjectivesThe aim of this study was to develop a discrete-time simulation model for people with type 1 diabetes mellitus, to estimate and compare mean life expectancy and quality-adjusted life-years (QALYs) over a lifetime between intensive and conventional blood glucose treatment groups.MethodsWe synthesized evidence on type 1 diabetes patients using several published sources. The simulation model was based on 13 equations to estimate risks of events and mortality. Cardiovascular disease (CVD) risk was obtained from results of the DCCT (diabetes control and complications trial). Mortality post-CVD event was based on a study using linked administrative data on people with diabetes from Western Australia. Information on incidence of renal disease and the progression to CVD was obtained from studies in Finland and Italy. Lower-extremity amputation (LEA) risk was based on the type 1 diabetes Swedish inpatient registry, and the risk of blindness was obtained from results of a German-based study. Where diabetes-specific data were unavailable, information from other populations was used. We examine the degree and source of parameter uncertainty and illustrate an application of the model in estimating lifetime outcomes of using intensive and conventional treatments for blood glucose control.ResultsFrom 15 years of age, male and female patients had an estimated life expectancy of 47.2 (95 % CI 35.2–59.2) and 52.7 (95 % CI 41.7–63.6) years in the intensive treatment group. The model produced estimates of the lifetime benefits of intensive treatment for blood glucose from the DCCT of 4.0 (95 % CI 1.2–6.8) QALYs for women and 4.6 (95 % CI 2.7–6.9) QALYs for men. Absolute risk per 1,000 person-years for fatal CVD events was simulated to be 1.37 and 2.51 in intensive and conventional treatment groups, respectively.ConclusionsThe model incorporates diabetic complications risk data from a type 1 diabetes population and synthesizes other type 1—specific data to estimate long-term outcomes of CVD, end-stage renal disease, LEA and risk of blindness, along with life expectancy and QALYs. External validation was carried out using life expectancy and absolute risk for fatal CVD events. Because of the flexible and transparent nature of the model, it has many potential future applications. More... »

PAGES

509-518

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40273-013-0047-4

DOI

http://dx.doi.org/10.1007/s40273-013-0047-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047742260

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23585309


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Glucose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Complications", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 1", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Life Expectancy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Outcome Assessment, Health Care", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality-Adjusted Life Years", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre for Health Policy, Programs and Economics, School of Population Health, The University of Melbourne, 3053, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "Centre for Health Policy, Programs and Economics, School of Population Health, The University of Melbourne, 3053, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lung", 
        "givenName": "Tom W. C.", 
        "id": "sg:person.0742472626.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742472626.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Health Policy, Programs and Economics, School of Population Health, The University of Melbourne, 3053, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "Centre for Health Policy, Programs and Economics, School of Population Health, The University of Melbourne, 3053, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clarke", 
        "givenName": "Philip M.", 
        "id": "sg:person.0734456474.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734456474.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sydney School of Public Health, Edward Ford Building (A27), The University of Sydney, 2006, Sydney, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "Sydney School of Public Health, Edward Ford Building (A27), The University of Sydney, 2006, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayes", 
        "givenName": "Alison J.", 
        "id": "sg:person.01251710574.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251710574.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Primary Care Health Sciences, University of Oxford, OX1 2ET, Oxford, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Primary Care Health Sciences, University of Oxford, OX1 2ET, Oxford, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stevens", 
        "givenName": "Richard J.", 
        "id": "sg:person.01052527755.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052527755.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Primary Care Health Sciences, University of Oxford, OX1 2ET, Oxford, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Primary Care Health Sciences, University of Oxford, OX1 2ET, Oxford, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Farmer", 
        "givenName": "Andrew", 
        "id": "sg:person.01040317302.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040317302.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00125-005-1717-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003605836", 
          "https://doi.org/10.1007/s00125-005-1717-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00019053-200927010-00008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048836923", 
          "https://doi.org/10.2165/00019053-200927010-00008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-004-1527-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036304902", 
          "https://doi.org/10.1007/s00125-004-1527-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11136-011-9902-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008020413", 
          "https://doi.org/10.1007/s11136-011-9902-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001250051309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021898666", 
          "https://doi.org/10.1007/s001250051309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1745-6215-8-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052599734", 
          "https://doi.org/10.1186/1745-6215-8-16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1304-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007161826", 
          "https://doi.org/10.1007/978-1-4612-1304-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-011-2276-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037775994", 
          "https://doi.org/10.1007/s00125-011-2276-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-005-0120-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050148859", 
          "https://doi.org/10.1007/s00125-005-0120-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-04-13", 
    "datePublishedReg": "2013-04-13", 
    "description": "ObjectivesThe aim of this study was to develop a discrete-time simulation model for people with type 1 diabetes mellitus, to estimate and compare mean life expectancy and quality-adjusted life-years (QALYs) over a lifetime between intensive and conventional blood glucose treatment groups.MethodsWe synthesized evidence on type 1 diabetes patients using several published sources. The simulation model was based on 13 equations to estimate risks of events and mortality. Cardiovascular disease (CVD) risk was obtained from results of the DCCT (diabetes control and complications trial). Mortality post-CVD event was based on a study using linked administrative data on people with diabetes from Western Australia. Information on incidence of renal disease and the progression to CVD was obtained from studies in Finland and Italy. Lower-extremity amputation (LEA) risk was based on the type 1 diabetes Swedish inpatient registry, and the risk of blindness was obtained from results of a German-based study. Where diabetes-specific data were unavailable, information from other populations was used. We examine the degree and source of parameter uncertainty and illustrate an application of the model in estimating lifetime outcomes of using intensive and conventional treatments for blood glucose control.ResultsFrom 15\u00a0years of age, male and female patients had an estimated life expectancy of 47.2 (95\u00a0% CI 35.2\u201359.2) and 52.7 (95\u00a0% CI 41.7\u201363.6)\u00a0years in the intensive treatment group. The model produced estimates of the lifetime benefits of intensive treatment for blood glucose from the DCCT of 4.0 (95\u00a0% CI 1.2\u20136.8) QALYs for women and 4.6 (95\u00a0% CI 2.7\u20136.9) QALYs for men. Absolute risk per 1,000 person-years for fatal CVD events was simulated to be 1.37 and 2.51 in intensive and conventional treatment groups, respectively.ConclusionsThe model incorporates diabetic complications risk data from a type 1 diabetes population and synthesizes other type 1\u2014specific data to estimate long-term outcomes of CVD, end-stage renal disease, LEA and risk of blindness, along with life expectancy and QALYs. External validation was carried out using life expectancy and absolute risk for fatal CVD events. Because of the flexible and transparent nature of the model, it has many potential future applications.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40273-013-0047-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5146686", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1102812", 
        "issn": [
          "1170-7690", 
          "1179-2027"
        ], 
        "name": "PharmacoEconomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "keywords": [
      "fatal CVD events", 
      "risk of blindness", 
      "treatment groups", 
      "CVD events", 
      "renal disease", 
      "absolute risk", 
      "life expectancy", 
      "lower extremity amputation risk", 
      "end-stage renal disease", 
      "type 1 diabetes population", 
      "type 1", 
      "type 1 diabetes mellitus", 
      "type 1 diabetes patients", 
      "glucose treatment group", 
      "diabetes-specific data", 
      "intensive treatment group", 
      "conventional treatment group", 
      "cardiovascular disease risk", 
      "long-term outcomes", 
      "Swedish Inpatient Registry", 
      "blood glucose control", 
      "risk of events", 
      "years of age", 
      "amputation risk", 
      "diabetes mellitus", 
      "Inpatient Registry", 
      "female patients", 
      "mean life expectancy", 
      "glucose control", 
      "diabetes population", 
      "diabetes patients", 
      "blood glucose", 
      "diabetic complications", 
      "intensive treatment", 
      "Outcomes Associated", 
      "ObjectivesThe aim", 
      "conventional treatment", 
      "disease risk", 
      "lifetime outcomes", 
      "DCCT", 
      "administrative data", 
      "complications", 
      "patients", 
      "risk", 
      "external validation", 
      "QALY", 
      "disease", 
      "lifetime benefits", 
      "expectancy", 
      "blindness", 
      "outcomes", 
      "treatment", 
      "group", 
      "mellitus", 
      "diabetes", 
      "registry", 
      "population", 
      "years", 
      "mortality", 
      "study", 
      "MethodsWe", 
      "incidence", 
      "ConclusionsThe model", 
      "potential future applications", 
      "QALYs", 
      "progression", 
      "women", 
      "events", 
      "CVD", 
      "age", 
      "men", 
      "Associated", 
      "people", 
      "glucose", 
      "data", 
      "aim", 
      "evidence", 
      "control", 
      "benefits", 
      "results", 
      "Western Australia", 
      "Finland", 
      "information", 
      "model", 
      "types", 
      "degree", 
      "LEA", 
      "Italy", 
      "validation", 
      "Australia", 
      "future applications", 
      "source", 
      "estimates", 
      "transparent nature", 
      "nature", 
      "discrete-time simulation model", 
      "applications", 
      "German", 
      "lifetime", 
      "uncertainty", 
      "simulation model", 
      "parameter uncertainties", 
      "equations", 
      "conventional blood glucose treatment groups", 
      "blood glucose treatment groups", 
      "Mortality post-CVD event", 
      "post-CVD event", 
      "ResultsFrom 15", 
      "Simulating Lifetime Outcomes Associated", 
      "Lifetime Outcomes Associated"
    ], 
    "name": "Simulating Lifetime Outcomes Associated with Complications for People with Type 1 Diabetes", 
    "pagination": "509-518", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047742260"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40273-013-0047-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23585309"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40273-013-0047-4", 
      "https://app.dimensions.ai/details/publication/pub.1047742260"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_616.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40273-013-0047-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40273-013-0047-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40273-013-0047-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40273-013-0047-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40273-013-0047-4'


 

This table displays all metadata directly associated to this object as RDF triples.

308 TRIPLES      22 PREDICATES      161 URIs      143 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40273-013-0047-4 schema:about N01163598659247249deae1b076916647
2 N1963438f9bf442fd84b34cd6db519ffb
3 N21f691bb19154cd7a013d4b70054f88a
4 N50f7e630c9264a9baf5b7962123c9a57
5 N5d2660cbf69241b7852656efcd0ec1b3
6 N715eafaa3e684054a1a17d333a149766
7 N7221b525de214963b558d1f16d273a25
8 N77c9a0c293d94fafa8bb3e139f6246a4
9 N82a24ee40f41413d8843098b9c865e55
10 N977c0547edaa4413a2d8596ae5ff036c
11 Na512307cbd3f459b8620a091ccf49d11
12 Nc37fb5d95d9343e9996da482796e4d1c
13 Nc5c8d5d4e1324ed89608956a5e985406
14 Nca488eb1f20d422a9726c9e1c0490d1d
15 Nfa9d205159354fd09b27e2e4399abec2
16 anzsrc-for:11
17 anzsrc-for:1103
18 anzsrc-for:1117
19 schema:author N35bb16584a1a48168af6322a1036f9e1
20 schema:citation sg:pub.10.1007/978-1-4612-1304-8
21 sg:pub.10.1007/s00125-004-1527-z
22 sg:pub.10.1007/s00125-005-0120-4
23 sg:pub.10.1007/s00125-005-1717-3
24 sg:pub.10.1007/s00125-011-2276-4
25 sg:pub.10.1007/s001250051309
26 sg:pub.10.1007/s11136-011-9902-y
27 sg:pub.10.1186/1745-6215-8-16
28 sg:pub.10.2165/00019053-200927010-00008
29 schema:datePublished 2013-04-13
30 schema:datePublishedReg 2013-04-13
31 schema:description ObjectivesThe aim of this study was to develop a discrete-time simulation model for people with type 1 diabetes mellitus, to estimate and compare mean life expectancy and quality-adjusted life-years (QALYs) over a lifetime between intensive and conventional blood glucose treatment groups.MethodsWe synthesized evidence on type 1 diabetes patients using several published sources. The simulation model was based on 13 equations to estimate risks of events and mortality. Cardiovascular disease (CVD) risk was obtained from results of the DCCT (diabetes control and complications trial). Mortality post-CVD event was based on a study using linked administrative data on people with diabetes from Western Australia. Information on incidence of renal disease and the progression to CVD was obtained from studies in Finland and Italy. Lower-extremity amputation (LEA) risk was based on the type 1 diabetes Swedish inpatient registry, and the risk of blindness was obtained from results of a German-based study. Where diabetes-specific data were unavailable, information from other populations was used. We examine the degree and source of parameter uncertainty and illustrate an application of the model in estimating lifetime outcomes of using intensive and conventional treatments for blood glucose control.ResultsFrom 15 years of age, male and female patients had an estimated life expectancy of 47.2 (95 % CI 35.2–59.2) and 52.7 (95 % CI 41.7–63.6) years in the intensive treatment group. The model produced estimates of the lifetime benefits of intensive treatment for blood glucose from the DCCT of 4.0 (95 % CI 1.2–6.8) QALYs for women and 4.6 (95 % CI 2.7–6.9) QALYs for men. Absolute risk per 1,000 person-years for fatal CVD events was simulated to be 1.37 and 2.51 in intensive and conventional treatment groups, respectively.ConclusionsThe model incorporates diabetic complications risk data from a type 1 diabetes population and synthesizes other type 1—specific data to estimate long-term outcomes of CVD, end-stage renal disease, LEA and risk of blindness, along with life expectancy and QALYs. External validation was carried out using life expectancy and absolute risk for fatal CVD events. Because of the flexible and transparent nature of the model, it has many potential future applications.
32 schema:genre article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf Ndbcf96260a3b49089e28bf592d216bbb
36 Nf41a0c56084a40cd99abf012fb5d321c
37 sg:journal.1102812
38 schema:keywords Associated
39 Australia
40 CVD
41 CVD events
42 ConclusionsThe model
43 DCCT
44 Finland
45 German
46 Inpatient Registry
47 Italy
48 LEA
49 Lifetime Outcomes Associated
50 MethodsWe
51 Mortality post-CVD event
52 ObjectivesThe aim
53 Outcomes Associated
54 QALY
55 QALYs
56 ResultsFrom 15
57 Simulating Lifetime Outcomes Associated
58 Swedish Inpatient Registry
59 Western Australia
60 absolute risk
61 administrative data
62 age
63 aim
64 amputation risk
65 applications
66 benefits
67 blindness
68 blood glucose
69 blood glucose control
70 blood glucose treatment groups
71 cardiovascular disease risk
72 complications
73 control
74 conventional blood glucose treatment groups
75 conventional treatment
76 conventional treatment group
77 data
78 degree
79 diabetes
80 diabetes mellitus
81 diabetes patients
82 diabetes population
83 diabetes-specific data
84 diabetic complications
85 discrete-time simulation model
86 disease
87 disease risk
88 end-stage renal disease
89 equations
90 estimates
91 events
92 evidence
93 expectancy
94 external validation
95 fatal CVD events
96 female patients
97 future applications
98 glucose
99 glucose control
100 glucose treatment group
101 group
102 incidence
103 information
104 intensive treatment
105 intensive treatment group
106 life expectancy
107 lifetime
108 lifetime benefits
109 lifetime outcomes
110 long-term outcomes
111 lower extremity amputation risk
112 mean life expectancy
113 mellitus
114 men
115 model
116 mortality
117 nature
118 outcomes
119 parameter uncertainties
120 patients
121 people
122 population
123 post-CVD event
124 potential future applications
125 progression
126 registry
127 renal disease
128 results
129 risk
130 risk of blindness
131 risk of events
132 simulation model
133 source
134 study
135 transparent nature
136 treatment
137 treatment groups
138 type 1
139 type 1 diabetes mellitus
140 type 1 diabetes patients
141 type 1 diabetes population
142 types
143 uncertainty
144 validation
145 women
146 years
147 years of age
148 schema:name Simulating Lifetime Outcomes Associated with Complications for People with Type 1 Diabetes
149 schema:pagination 509-518
150 schema:productId N01592b26ec2b455ab36f35c4b5f0272f
151 N94c8dbc666dc431ba6f3a9dd94013a71
152 Ncee6f3fb2d6f43b195f319a41a12ebbf
153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047742260
154 https://doi.org/10.1007/s40273-013-0047-4
155 schema:sdDatePublished 2022-01-01T18:31
156 schema:sdLicense https://scigraph.springernature.com/explorer/license/
157 schema:sdPublisher N984f33bd55304cb3b1c19d7c683629d5
158 schema:url https://doi.org/10.1007/s40273-013-0047-4
159 sgo:license sg:explorer/license/
160 sgo:sdDataset articles
161 rdf:type schema:ScholarlyArticle
162 N01163598659247249deae1b076916647 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Sex Factors
164 rdf:type schema:DefinedTerm
165 N01592b26ec2b455ab36f35c4b5f0272f schema:name dimensions_id
166 schema:value pub.1047742260
167 rdf:type schema:PropertyValue
168 N1963438f9bf442fd84b34cd6db519ffb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Adolescent
170 rdf:type schema:DefinedTerm
171 N21f691bb19154cd7a013d4b70054f88a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Risk Factors
173 rdf:type schema:DefinedTerm
174 N2cc27a3054c24a03ada0d6eaca1e6b1e rdf:first sg:person.0734456474.38
175 rdf:rest N80ca6e828fe649f7abc3e6f594d4effa
176 N2e80c27fe60f46d0b7ba8ee0da2493d3 rdf:first sg:person.01040317302.24
177 rdf:rest rdf:nil
178 N35bb16584a1a48168af6322a1036f9e1 rdf:first sg:person.0742472626.03
179 rdf:rest N2cc27a3054c24a03ada0d6eaca1e6b1e
180 N50f7e630c9264a9baf5b7962123c9a57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Middle Aged
182 rdf:type schema:DefinedTerm
183 N5d2660cbf69241b7852656efcd0ec1b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Models, Statistical
185 rdf:type schema:DefinedTerm
186 N715eafaa3e684054a1a17d333a149766 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Adult
188 rdf:type schema:DefinedTerm
189 N7221b525de214963b558d1f16d273a25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Diabetes Complications
191 rdf:type schema:DefinedTerm
192 N77c9a0c293d94fafa8bb3e139f6246a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Male
194 rdf:type schema:DefinedTerm
195 N7ca897525501418ea5ddf34e66351a6f rdf:first sg:person.01052527755.23
196 rdf:rest N2e80c27fe60f46d0b7ba8ee0da2493d3
197 N80ca6e828fe649f7abc3e6f594d4effa rdf:first sg:person.01251710574.45
198 rdf:rest N7ca897525501418ea5ddf34e66351a6f
199 N82a24ee40f41413d8843098b9c865e55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Life Expectancy
201 rdf:type schema:DefinedTerm
202 N94c8dbc666dc431ba6f3a9dd94013a71 schema:name pubmed_id
203 schema:value 23585309
204 rdf:type schema:PropertyValue
205 N977c0547edaa4413a2d8596ae5ff036c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Outcome Assessment, Health Care
207 rdf:type schema:DefinedTerm
208 N984f33bd55304cb3b1c19d7c683629d5 schema:name Springer Nature - SN SciGraph project
209 rdf:type schema:Organization
210 Na512307cbd3f459b8620a091ccf49d11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
211 schema:name Quality-Adjusted Life Years
212 rdf:type schema:DefinedTerm
213 Nc37fb5d95d9343e9996da482796e4d1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
214 schema:name Humans
215 rdf:type schema:DefinedTerm
216 Nc5c8d5d4e1324ed89608956a5e985406 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
217 schema:name Diabetes Mellitus, Type 1
218 rdf:type schema:DefinedTerm
219 Nca488eb1f20d422a9726c9e1c0490d1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
220 schema:name Female
221 rdf:type schema:DefinedTerm
222 Ncee6f3fb2d6f43b195f319a41a12ebbf schema:name doi
223 schema:value 10.1007/s40273-013-0047-4
224 rdf:type schema:PropertyValue
225 Ndbcf96260a3b49089e28bf592d216bbb schema:volumeNumber 31
226 rdf:type schema:PublicationVolume
227 Nf41a0c56084a40cd99abf012fb5d321c schema:issueNumber 6
228 rdf:type schema:PublicationIssue
229 Nfa9d205159354fd09b27e2e4399abec2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
230 schema:name Blood Glucose
231 rdf:type schema:DefinedTerm
232 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
233 schema:name Medical and Health Sciences
234 rdf:type schema:DefinedTerm
235 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
236 schema:name Clinical Sciences
237 rdf:type schema:DefinedTerm
238 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
239 schema:name Public Health and Health Services
240 rdf:type schema:DefinedTerm
241 sg:grant.5146686 http://pending.schema.org/fundedItem sg:pub.10.1007/s40273-013-0047-4
242 rdf:type schema:MonetaryGrant
243 sg:journal.1102812 schema:issn 1170-7690
244 1179-2027
245 schema:name PharmacoEconomics
246 schema:publisher Springer Nature
247 rdf:type schema:Periodical
248 sg:person.01040317302.24 schema:affiliation grid-institutes:grid.4991.5
249 schema:familyName Farmer
250 schema:givenName Andrew
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040317302.24
252 rdf:type schema:Person
253 sg:person.01052527755.23 schema:affiliation grid-institutes:grid.4991.5
254 schema:familyName Stevens
255 schema:givenName Richard J.
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052527755.23
257 rdf:type schema:Person
258 sg:person.01251710574.45 schema:affiliation grid-institutes:grid.1013.3
259 schema:familyName Hayes
260 schema:givenName Alison J.
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251710574.45
262 rdf:type schema:Person
263 sg:person.0734456474.38 schema:affiliation grid-institutes:grid.1008.9
264 schema:familyName Clarke
265 schema:givenName Philip M.
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734456474.38
267 rdf:type schema:Person
268 sg:person.0742472626.03 schema:affiliation grid-institutes:grid.1008.9
269 schema:familyName Lung
270 schema:givenName Tom W. C.
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742472626.03
272 rdf:type schema:Person
273 sg:pub.10.1007/978-1-4612-1304-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007161826
274 https://doi.org/10.1007/978-1-4612-1304-8
275 rdf:type schema:CreativeWork
276 sg:pub.10.1007/s00125-004-1527-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1036304902
277 https://doi.org/10.1007/s00125-004-1527-z
278 rdf:type schema:CreativeWork
279 sg:pub.10.1007/s00125-005-0120-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050148859
280 https://doi.org/10.1007/s00125-005-0120-4
281 rdf:type schema:CreativeWork
282 sg:pub.10.1007/s00125-005-1717-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003605836
283 https://doi.org/10.1007/s00125-005-1717-3
284 rdf:type schema:CreativeWork
285 sg:pub.10.1007/s00125-011-2276-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037775994
286 https://doi.org/10.1007/s00125-011-2276-4
287 rdf:type schema:CreativeWork
288 sg:pub.10.1007/s001250051309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021898666
289 https://doi.org/10.1007/s001250051309
290 rdf:type schema:CreativeWork
291 sg:pub.10.1007/s11136-011-9902-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1008020413
292 https://doi.org/10.1007/s11136-011-9902-y
293 rdf:type schema:CreativeWork
294 sg:pub.10.1186/1745-6215-8-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052599734
295 https://doi.org/10.1186/1745-6215-8-16
296 rdf:type schema:CreativeWork
297 sg:pub.10.2165/00019053-200927010-00008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048836923
298 https://doi.org/10.2165/00019053-200927010-00008
299 rdf:type schema:CreativeWork
300 grid-institutes:grid.1008.9 schema:alternateName Centre for Health Policy, Programs and Economics, School of Population Health, The University of Melbourne, 3053, Melbourne, VIC, Australia
301 schema:name Centre for Health Policy, Programs and Economics, School of Population Health, The University of Melbourne, 3053, Melbourne, VIC, Australia
302 rdf:type schema:Organization
303 grid-institutes:grid.1013.3 schema:alternateName Sydney School of Public Health, Edward Ford Building (A27), The University of Sydney, 2006, Sydney, NSW, Australia
304 schema:name Sydney School of Public Health, Edward Ford Building (A27), The University of Sydney, 2006, Sydney, NSW, Australia
305 rdf:type schema:Organization
306 grid-institutes:grid.4991.5 schema:alternateName Department of Primary Care Health Sciences, University of Oxford, OX1 2ET, Oxford, United Kingdom
307 schema:name Department of Primary Care Health Sciences, University of Oxford, OX1 2ET, Oxford, United Kingdom
308 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...