A Survey on Pharmacovigilance Activities in ASEAN and Selected Non-ASEAN Countries, and the Use of Quantitative Signal Detection Algorithms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06

AUTHORS

Cheng Leng Chan, Pei San Ang, Shu Chuen Li

ABSTRACT

INTRODUCTION: Most Countries have pharmacovigilance (PV) systems in place to monitor the safe use of health products. The process involves the detection and assessment of safety issues from various sources of information, communicating the risk to stakeholders and taking other relevant risk minimization measures. OBJECTIVES: This study aimed to assess the PV status in Association of Southeast Asian Nation (ASEAN) countries, sources for postmarket safety monitoring, methods used for signal detection and the need for a quantitative signal detection algorithm (QSDA). Comparisons were conducted with centres outside ASEAN. METHODS: A questionnaire was sent to all PV centres in ASEAN countries, as well as seven other countries, from November 2015 to June 2016. The questionnaire was designed to collect information on the status of PV, with a focus on the use of a QSDA. RESULTS: Data were collected from nine ASEAN countries and seven other countries. PV activities were conducted in all these countries, which were at different stages of development. In terms of adverse drug reaction (ADR) reports, the average number received per year ranged from 3 to 50,000 reports for ASEAN countries and from 7000 to 1,103,200 for non-ASEAN countries. Thirty-three percent of ASEAN countries utilized statistical methods to help detect signals from ADR reports compared with 100% in the other non-ASEAN countries. Eighty percent agreed that the development of a QSDA would help in drug signal detection. The main limitation identified was the lack of knowledge and/or lack of resources. CONCLUSION: Spontaneous ADR reports from healthcare professionals remains the most frequently used source for safety monitoring. The traditional method of case-by-case review of ADR reports prevailed for signal detection in ASEAN countries. As the reports continue to grow, the development of a QSDA would be useful in helping detect safety signals. More... »

PAGES

517-530

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40264-017-0510-9

DOI

http://dx.doi.org/10.1007/s40264-017-0510-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084038520

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28247278


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adverse Drug Reaction Reporting Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asian Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug-Related Side Effects and Adverse Reactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Personnel", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pharmacovigilance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surveys and Questionnaires", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Newcastle Australia", 
          "id": "https://www.grid.ac/institutes/grid.266842.c", 
          "name": [
            "Health Products Regulation Group, Health Sciences Authority, 11 Biopolis Way #11-01 Helios, 138667, Singapore, Singapore", 
            "School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chan", 
        "givenName": "Cheng Leng", 
        "id": "sg:person.01200563703.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200563703.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Sciences Authority", 
          "id": "https://www.grid.ac/institutes/grid.413898.f", 
          "name": [
            "Health Products Regulation Group, Health Sciences Authority, 11 Biopolis Way #11-01 Helios, 138667, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ang", 
        "givenName": "Pei San", 
        "id": "sg:person.010237077017.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010237077017.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Newcastle Australia", 
          "id": "https://www.grid.ac/institutes/grid.266842.c", 
          "name": [
            "School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Shu Chuen", 
        "id": "sg:person.01157132645.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157132645.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3109/15563650.2012.700402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007598301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4780071004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010028293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pds.1742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015083994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pds.1742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015083994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pds.894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016597223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4103/0976-500x.120941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023479584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pds.2336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025186661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(00)02799-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026617336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/11536390-000000000-00000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026780980", 
          "https://doi.org/10.2165/11536390-000000000-00000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/11536390-000000000-00000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026780980", 
          "https://doi.org/10.2165/11536390-000000000-00000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pds.4023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030674330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00002018-200528100-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032498547", 
          "https://doi.org/10.2165/00002018-200528100-00001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00002018-200528100-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032498547", 
          "https://doi.org/10.2165/00002018-200528100-00001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.165.12.1363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034606325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00002018-200225060-00010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035518652", 
          "https://doi.org/10.2165/00002018-200225060-00010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00002018-200225060-00010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035518652", 
          "https://doi.org/10.2165/00002018-200225060-00010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40264-012-0001-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035716436", 
          "https://doi.org/10.1007/s40264-012-0001-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1517/14740338.6.4.451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038942519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/11593830-000000000-00000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040155269", 
          "https://doi.org/10.2165/11593830-000000000-00000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40264-016-0405-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041669059", 
          "https://doi.org/10.1007/s40264-016-0405-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40264-016-0405-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041669059", 
          "https://doi.org/10.1007/s40264-016-0405-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1517/14740338.2016.1167184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046218751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12906-016-1168-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050421187", 
          "https://doi.org/10.1186/s12906-016-1168-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12906-016-1168-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050421187", 
          "https://doi.org/10.1186/s12906-016-1168-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40264-014-0194-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052224036", 
          "https://doi.org/10.1007/s40264-014-0194-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40264-014-0194-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052224036", 
          "https://doi.org/10.1007/s40264-014-0194-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06", 
    "datePublishedReg": "2017-06-01", 
    "description": "INTRODUCTION: Most Countries have pharmacovigilance (PV) systems in place to monitor the safe use of health products. The process involves the detection and assessment of safety issues from various sources of information, communicating the risk to stakeholders and taking other relevant risk minimization measures.\nOBJECTIVES: This study aimed to assess the PV status in Association of Southeast Asian Nation (ASEAN) countries, sources for postmarket safety monitoring, methods used for signal detection and the need for a quantitative signal detection algorithm (QSDA). Comparisons were conducted with centres outside ASEAN.\nMETHODS: A questionnaire was sent to all PV centres in ASEAN countries, as well as seven other countries, from November 2015 to June 2016. The questionnaire was designed to collect information on the status of PV, with a focus on the use of a QSDA.\nRESULTS: Data were collected from nine ASEAN countries and seven other countries. PV activities were conducted in all these countries, which were at different stages of development. In terms of adverse drug reaction (ADR) reports, the average number received per year ranged from 3 to 50,000 reports for ASEAN countries and from 7000 to 1,103,200 for non-ASEAN countries. Thirty-three percent of ASEAN countries utilized statistical methods to help detect signals from ADR reports compared with 100% in the other non-ASEAN countries. Eighty percent agreed that the development of a QSDA would help in drug signal detection. The main limitation identified was the lack of knowledge and/or lack of resources.\nCONCLUSION: Spontaneous ADR reports from healthcare professionals remains the most frequently used source for safety monitoring. The traditional method of case-by-case review of ADR reports prevailed for signal detection in ASEAN countries. As the reports continue to grow, the development of a QSDA would be useful in helping detect safety signals.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40264-017-0510-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1096281", 
        "issn": [
          "0114-5916", 
          "1179-1942"
        ], 
        "name": "Drug Safety", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "name": "A Survey on Pharmacovigilance Activities in ASEAN and Selected Non-ASEAN Countries, and the Use of Quantitative Signal Detection Algorithms", 
    "pagination": "517-530", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e7e02b204b5fd43601dd08a40389b9ddb25114ba4e8b0d2df382171b5d609325"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28247278"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9002928"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40264-017-0510-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084038520"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40264-017-0510-9", 
      "https://app.dimensions.ai/details/publication/pub.1084038520"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113661_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40264-017-0510-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40264-017-0510-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40264-017-0510-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40264-017-0510-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40264-017-0510-9'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      56 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40264-017-0510-9 schema:about N0e1c47d86e204f258efeff21a9716508
2 N2ba64820896d48e0a02aabe37744c4f7
3 N495267a3a0d241a38abbf47888760ae7
4 Nbba12853b964470685f988dae9a0b753
5 Nc0f862f5576d4596993d1e025d41f6b3
6 Nc45fa5813a314618b913c84e3df7f72f
7 Nd725f3deeab546219e49e468865f401e
8 Nefba5d8cbb284b14aee3e24f5f2e0ee3
9 anzsrc-for:11
10 anzsrc-for:1117
11 schema:author N07a8eed74e8c4488bb3c034c5364fb34
12 schema:citation sg:pub.10.1007/s40264-012-0001-y
13 sg:pub.10.1007/s40264-014-0194-3
14 sg:pub.10.1007/s40264-016-0405-1
15 sg:pub.10.1186/s12906-016-1168-z
16 sg:pub.10.2165/00002018-200225060-00010
17 sg:pub.10.2165/00002018-200528100-00001
18 sg:pub.10.2165/11536390-000000000-00000
19 sg:pub.10.2165/11593830-000000000-00000
20 https://doi.org/10.1001/archinte.165.12.1363
21 https://doi.org/10.1002/pds.1742
22 https://doi.org/10.1002/pds.2336
23 https://doi.org/10.1002/pds.4023
24 https://doi.org/10.1002/pds.894
25 https://doi.org/10.1002/sim.4780071004
26 https://doi.org/10.1016/s0140-6736(00)02799-9
27 https://doi.org/10.1517/14740338.2016.1167184
28 https://doi.org/10.1517/14740338.6.4.451
29 https://doi.org/10.3109/15563650.2012.700402
30 https://doi.org/10.4103/0976-500x.120941
31 schema:datePublished 2017-06
32 schema:datePublishedReg 2017-06-01
33 schema:description INTRODUCTION: Most Countries have pharmacovigilance (PV) systems in place to monitor the safe use of health products. The process involves the detection and assessment of safety issues from various sources of information, communicating the risk to stakeholders and taking other relevant risk minimization measures. OBJECTIVES: This study aimed to assess the PV status in Association of Southeast Asian Nation (ASEAN) countries, sources for postmarket safety monitoring, methods used for signal detection and the need for a quantitative signal detection algorithm (QSDA). Comparisons were conducted with centres outside ASEAN. METHODS: A questionnaire was sent to all PV centres in ASEAN countries, as well as seven other countries, from November 2015 to June 2016. The questionnaire was designed to collect information on the status of PV, with a focus on the use of a QSDA. RESULTS: Data were collected from nine ASEAN countries and seven other countries. PV activities were conducted in all these countries, which were at different stages of development. In terms of adverse drug reaction (ADR) reports, the average number received per year ranged from 3 to 50,000 reports for ASEAN countries and from 7000 to 1,103,200 for non-ASEAN countries. Thirty-three percent of ASEAN countries utilized statistical methods to help detect signals from ADR reports compared with 100% in the other non-ASEAN countries. Eighty percent agreed that the development of a QSDA would help in drug signal detection. The main limitation identified was the lack of knowledge and/or lack of resources. CONCLUSION: Spontaneous ADR reports from healthcare professionals remains the most frequently used source for safety monitoring. The traditional method of case-by-case review of ADR reports prevailed for signal detection in ASEAN countries. As the reports continue to grow, the development of a QSDA would be useful in helping detect safety signals.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N7826432eeaeb4db7bd4dd3601d414922
38 Nd8b737252d0e46cdb6ffed30acc9396d
39 sg:journal.1096281
40 schema:name A Survey on Pharmacovigilance Activities in ASEAN and Selected Non-ASEAN Countries, and the Use of Quantitative Signal Detection Algorithms
41 schema:pagination 517-530
42 schema:productId N11085fe7a7034033b824dee8f9347f46
43 Nabf835e655b94bcfbd902cc8b5e13db0
44 Nb4266e4a86d2467f929fe91eda4a6368
45 Nb6f8f14621284a898abf1a8d8cf8e391
46 Ndaaff1d1103d4bb5ac59d4579caddbcf
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084038520
48 https://doi.org/10.1007/s40264-017-0510-9
49 schema:sdDatePublished 2019-04-11T10:34
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nb5ccb0f06c0344ccafbb8341dbeee171
52 schema:url https://link.springer.com/10.1007%2Fs40264-017-0510-9
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N07a8eed74e8c4488bb3c034c5364fb34 rdf:first sg:person.01200563703.74
57 rdf:rest N22fc763720284052a075fb7dbf672c7e
58 N0e1c47d86e204f258efeff21a9716508 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Health Personnel
60 rdf:type schema:DefinedTerm
61 N11085fe7a7034033b824dee8f9347f46 schema:name readcube_id
62 schema:value e7e02b204b5fd43601dd08a40389b9ddb25114ba4e8b0d2df382171b5d609325
63 rdf:type schema:PropertyValue
64 N22fc763720284052a075fb7dbf672c7e rdf:first sg:person.010237077017.78
65 rdf:rest N7718e4f39ebd4a318abc52ca7e258666
66 N2ba64820896d48e0a02aabe37744c4f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Drug-Related Side Effects and Adverse Reactions
68 rdf:type schema:DefinedTerm
69 N495267a3a0d241a38abbf47888760ae7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Humans
71 rdf:type schema:DefinedTerm
72 N7718e4f39ebd4a318abc52ca7e258666 rdf:first sg:person.01157132645.51
73 rdf:rest rdf:nil
74 N7826432eeaeb4db7bd4dd3601d414922 schema:volumeNumber 40
75 rdf:type schema:PublicationVolume
76 Nabf835e655b94bcfbd902cc8b5e13db0 schema:name doi
77 schema:value 10.1007/s40264-017-0510-9
78 rdf:type schema:PropertyValue
79 Nb4266e4a86d2467f929fe91eda4a6368 schema:name pubmed_id
80 schema:value 28247278
81 rdf:type schema:PropertyValue
82 Nb5ccb0f06c0344ccafbb8341dbeee171 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Nb6f8f14621284a898abf1a8d8cf8e391 schema:name dimensions_id
85 schema:value pub.1084038520
86 rdf:type schema:PropertyValue
87 Nbba12853b964470685f988dae9a0b753 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Surveys and Questionnaires
89 rdf:type schema:DefinedTerm
90 Nc0f862f5576d4596993d1e025d41f6b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Pharmacovigilance
92 rdf:type schema:DefinedTerm
93 Nc45fa5813a314618b913c84e3df7f72f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Algorithms
95 rdf:type schema:DefinedTerm
96 Nd725f3deeab546219e49e468865f401e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Adverse Drug Reaction Reporting Systems
98 rdf:type schema:DefinedTerm
99 Nd8b737252d0e46cdb6ffed30acc9396d schema:issueNumber 6
100 rdf:type schema:PublicationIssue
101 Ndaaff1d1103d4bb5ac59d4579caddbcf schema:name nlm_unique_id
102 schema:value 9002928
103 rdf:type schema:PropertyValue
104 Nefba5d8cbb284b14aee3e24f5f2e0ee3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Asian Continental Ancestry Group
106 rdf:type schema:DefinedTerm
107 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
108 schema:name Medical and Health Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
111 schema:name Public Health and Health Services
112 rdf:type schema:DefinedTerm
113 sg:journal.1096281 schema:issn 0114-5916
114 1179-1942
115 schema:name Drug Safety
116 rdf:type schema:Periodical
117 sg:person.010237077017.78 schema:affiliation https://www.grid.ac/institutes/grid.413898.f
118 schema:familyName Ang
119 schema:givenName Pei San
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010237077017.78
121 rdf:type schema:Person
122 sg:person.01157132645.51 schema:affiliation https://www.grid.ac/institutes/grid.266842.c
123 schema:familyName Li
124 schema:givenName Shu Chuen
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157132645.51
126 rdf:type schema:Person
127 sg:person.01200563703.74 schema:affiliation https://www.grid.ac/institutes/grid.266842.c
128 schema:familyName Chan
129 schema:givenName Cheng Leng
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200563703.74
131 rdf:type schema:Person
132 sg:pub.10.1007/s40264-012-0001-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1035716436
133 https://doi.org/10.1007/s40264-012-0001-y
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s40264-014-0194-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052224036
136 https://doi.org/10.1007/s40264-014-0194-3
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s40264-016-0405-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041669059
139 https://doi.org/10.1007/s40264-016-0405-1
140 rdf:type schema:CreativeWork
141 sg:pub.10.1186/s12906-016-1168-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1050421187
142 https://doi.org/10.1186/s12906-016-1168-z
143 rdf:type schema:CreativeWork
144 sg:pub.10.2165/00002018-200225060-00010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035518652
145 https://doi.org/10.2165/00002018-200225060-00010
146 rdf:type schema:CreativeWork
147 sg:pub.10.2165/00002018-200528100-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032498547
148 https://doi.org/10.2165/00002018-200528100-00001
149 rdf:type schema:CreativeWork
150 sg:pub.10.2165/11536390-000000000-00000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026780980
151 https://doi.org/10.2165/11536390-000000000-00000
152 rdf:type schema:CreativeWork
153 sg:pub.10.2165/11593830-000000000-00000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040155269
154 https://doi.org/10.2165/11593830-000000000-00000
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1001/archinte.165.12.1363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034606325
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/pds.1742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015083994
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/pds.2336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025186661
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/pds.4023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030674330
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/pds.894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016597223
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/sim.4780071004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010028293
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0140-6736(00)02799-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026617336
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1517/14740338.2016.1167184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046218751
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1517/14740338.6.4.451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038942519
173 rdf:type schema:CreativeWork
174 https://doi.org/10.3109/15563650.2012.700402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007598301
175 rdf:type schema:CreativeWork
176 https://doi.org/10.4103/0976-500x.120941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023479584
177 rdf:type schema:CreativeWork
178 https://www.grid.ac/institutes/grid.266842.c schema:alternateName University of Newcastle Australia
179 schema:name Health Products Regulation Group, Health Sciences Authority, 11 Biopolis Way #11-01 Helios, 138667, Singapore, Singapore
180 School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.413898.f schema:alternateName Health Sciences Authority
183 schema:name Health Products Regulation Group, Health Sciences Authority, 11 Biopolis Way #11-01 Helios, 138667, Singapore, Singapore
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...