A Pharmacovigilance Signaling System Based on FDA Regulatory Action and Post-Marketing Adverse Event Reports View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-03-05

AUTHORS

Keith B. Hoffman, Mo Dimbil, Nicholas P. Tatonetti, Robert F. Kyle

ABSTRACT

IntroductionMany serious drug adverse events (AEs) only manifest well after regulatory approval. Therefore, the development of signaling methods to use with post-approval AE databases appears vital to comprehensively assess real-world drug safety. However, with millions of potential drug–AE pairs to analyze, the issue of focus is daunting.ObjectiveOur objective was to develop a signaling platform that focuses on AEs with historically demonstrated regulatory interest and to analyze such AEs with a disproportional reporting method that offers broad signal detection and acceptable false-positive rates.MethodsWe analyzed over 1500 US FDA regulatory actions (safety communications and drug label changes) from 2008 to 2015 to construct a list of eligible signal AEs. The FDA Adverse Event Reporting System (FAERS) was used to evaluate disproportional reporting rates, constrained by minimum case counts and confidence interval limits, of these selected AEs for 109 training drugs. This step led to 45 AEs that appeared to have a low likelihood of being added to a label by FDA, so they were removed from the signal eligible list. We measured disproportional reporting for the final group of eligible AEs on a test group of 29 drugs that were not used in either the eligible list construction or the training steps.ResultsIn a group of 29 test drugs, our model reduced the number of potential drug–AE signals from 41,834 to 97 and predicted 73 % of individual drug label changes. The model also predicted at least one AE–drug pair label change in 66 % of all the label changes for the test drugs.ConclusionsBy concentrating on AE types with already demonstrated interest to FDA, we constructed a signaling system that provided focus regarding drug–AE pairs and suitable accuracy with regard to the issuance of FDA labeling changes. We suggest that focus on historical regulatory actions may increase the utility of pharmacovigilance signaling systems. More... »

PAGES

561-575

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40264-016-0409-x

DOI

http://dx.doi.org/10.1007/s40264-016-0409-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037488819

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26946292


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adverse Drug Reaction Reporting Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Approval", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug-Related Side Effects and Adverse Reactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pharmacovigilance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Product Surveillance, Postmarketing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United States", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United States Food and Drug Administration", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Advera Health Analytics, Inc., 3663\u00a0N. Laughlin Road, Suite 102, 95403, Santa Rosa, CA, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Advera Health Analytics, Inc., 3663\u00a0N. Laughlin Road, Suite 102, 95403, Santa Rosa, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoffman", 
        "givenName": "Keith B.", 
        "id": "sg:person.01140725314.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140725314.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Advera Health Analytics, Inc., 3663\u00a0N. Laughlin Road, Suite 102, 95403, Santa Rosa, CA, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Advera Health Analytics, Inc., 3663\u00a0N. Laughlin Road, Suite 102, 95403, Santa Rosa, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dimbil", 
        "givenName": "Mo", 
        "id": "sg:person.0743435467.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743435467.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Informatics, Columbia University, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Biomedical Informatics, Columbia University, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tatonetti", 
        "givenName": "Nicholas P.", 
        "id": "sg:person.0651210417.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651210417.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Advera Health Analytics, Inc., 3663\u00a0N. Laughlin Road, Suite 102, 95403, Santa Rosa, CA, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Advera Health Analytics, Inc., 3663\u00a0N. Laughlin Road, Suite 102, 95403, Santa Rosa, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kyle", 
        "givenName": "Robert F.", 
        "id": "sg:person.01254120767.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254120767.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.2165/00002018-200629100-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047870213", 
          "https://doi.org/10.2165/00002018-200629100-00005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00002018-200225060-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038023122", 
          "https://doi.org/10.2165/00002018-200225060-00001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1046/j.1525-1497.2003.20130.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039330498", 
          "https://doi.org/10.1046/j.1525-1497.2003.20130.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00002018-200932060-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031905666", 
          "https://doi.org/10.2165/00002018-200932060-00007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12916-015-0430-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034690267", 
          "https://doi.org/10.1186/s12916-015-0430-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11673-011-9342-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039075914", 
          "https://doi.org/10.1007/s11673-011-9342-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00002018-200427100-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051799890", 
          "https://doi.org/10.2165/00002018-200427100-00004"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-03-05", 
    "datePublishedReg": "2016-03-05", 
    "description": "IntroductionMany serious drug adverse events (AEs) only manifest well after regulatory approval. Therefore, the development of signaling methods to use with post-approval AE databases appears vital to comprehensively assess real-world drug safety. However, with millions of potential drug\u2013AE pairs to analyze, the issue of focus is daunting.ObjectiveOur objective was to develop a signaling platform that focuses on AEs with historically demonstrated regulatory interest and to analyze such AEs with a disproportional reporting method that offers broad signal detection and acceptable false-positive rates.MethodsWe analyzed over 1500 US FDA regulatory actions (safety communications and drug label changes) from 2008 to 2015 to construct a list of eligible signal AEs. The FDA Adverse Event Reporting System (FAERS) was used to evaluate disproportional reporting rates, constrained by minimum case counts and confidence interval limits, of these selected AEs for 109 training drugs. This step led to 45 AEs that appeared to have a low likelihood of being added to a label by FDA, so they were removed from the signal eligible list. We measured disproportional reporting for the final group of eligible AEs on a test group of 29 drugs that were not used in either the eligible list construction or the training steps.ResultsIn a group of 29 test drugs, our model reduced the number of potential drug\u2013AE signals from 41,834 to 97 and predicted 73\u00a0% of individual drug label changes. The model also predicted at least one AE\u2013drug pair label change in 66\u00a0% of all the label changes for the test drugs.ConclusionsBy concentrating on AE types with already demonstrated interest to FDA, we constructed a signaling system that provided focus regarding drug\u2013AE pairs and suitable accuracy with regard to the issuance of FDA labeling changes. We suggest that focus on historical regulatory actions may increase the utility of pharmacovigilance signaling systems.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40264-016-0409-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3801821", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1096281", 
        "issn": [
          "0114-5916", 
          "1179-1942"
        ], 
        "name": "Drug Safety", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "keywords": [
      "adverse events", 
      "FDA Adverse Event Reporting System", 
      "drug-AE pairs", 
      "test drug", 
      "post-marketing adverse event reports", 
      "label changes", 
      "FDA labeling changes", 
      "Adverse Event Reporting System", 
      "drug adverse events", 
      "FDA regulatory actions", 
      "such adverse events", 
      "adverse event reports", 
      "Event Reporting System", 
      "acceptable false-positive rates", 
      "false-positive rate", 
      "AE types", 
      "regulatory action", 
      "confidence interval limits", 
      "training drug", 
      "disproportional reporting", 
      "labeling changes", 
      "drug safety", 
      "test group", 
      "lower likelihood", 
      "case counts", 
      "drugs", 
      "ObjectiveOur objective", 
      "final group", 
      "regulatory approval", 
      "AE database", 
      "reporting rates", 
      "event reports", 
      "reporting system", 
      "FDA", 
      "issue of focus", 
      "reporting methods", 
      "group", 
      "interval limits", 
      "MethodsWe", 
      "action", 
      "ResultsIn", 
      "pharmacovigilance", 
      "changes", 
      "signaling system", 
      "counts", 
      "approval", 
      "rate", 
      "report", 
      "safety", 
      "reporting", 
      "regulatory interest", 
      "ConclusionsBy", 
      "list", 
      "focus", 
      "likelihood", 
      "database", 
      "events", 
      "regard", 
      "objective", 
      "utility", 
      "development", 
      "number", 
      "detection", 
      "types", 
      "method", 
      "interest", 
      "model", 
      "millions", 
      "system", 
      "labels", 
      "step", 
      "pairs", 
      "issues", 
      "signals", 
      "accuracy", 
      "list construction", 
      "signal detection", 
      "limit", 
      "platform", 
      "issuance", 
      "suitable accuracy", 
      "training step", 
      "construction", 
      "IntroductionMany serious drug adverse events", 
      "serious drug adverse events", 
      "post-approval AE databases", 
      "real-world drug safety", 
      "potential drug\u2013AE pairs", 
      "disproportional reporting method", 
      "broad signal detection", 
      "US FDA regulatory actions", 
      "eligible signal AEs", 
      "signal AEs", 
      "disproportional reporting rates", 
      "minimum case counts", 
      "signal eligible list", 
      "eligible list", 
      "eligible AEs", 
      "eligible list construction", 
      "potential drug\u2013AE signals", 
      "drug\u2013AE signals", 
      "individual drug label changes", 
      "drug label changes", 
      "AE\u2013drug pair label change", 
      "pair label change", 
      "historical regulatory actions", 
      "utility of pharmacovigilance", 
      "Pharmacovigilance Signaling System"
    ], 
    "name": "A Pharmacovigilance Signaling System Based on FDA Regulatory Action and Post-Marketing Adverse Event Reports", 
    "pagination": "561-575", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037488819"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40264-016-0409-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26946292"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40264-016-0409-x", 
      "https://app.dimensions.ai/details/publication/pub.1037488819"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_705.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40264-016-0409-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40264-016-0409-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40264-016-0409-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40264-016-0409-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40264-016-0409-x'


 

This table displays all metadata directly associated to this object as RDF triples.

260 TRIPLES      22 PREDICATES      150 URIs      135 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40264-016-0409-x schema:about N059234bd59dc40288442fadcce547252
2 N0f7279cea5684997a00630d32e38cdc8
3 N10fd395e0fd74afdafb815ff1ca1f5bf
4 N2779d09558fb4a7b926c68be15d47964
5 Na566905c803a48deb8075fbeef401fcf
6 Nc10dc4a35e1f40db9e9274ee40918911
7 Ncd55c035e38742af8979bc637b436587
8 Neddd7ad3e7ac4f4c8982d15cba3dfcb0
9 Nf52c046ed8594ce98622c89a828eab3a
10 anzsrc-for:11
11 anzsrc-for:1117
12 schema:author Nd3e3896ddbb442c89c597711625ed5ef
13 schema:citation sg:pub.10.1007/s11673-011-9342-y
14 sg:pub.10.1046/j.1525-1497.2003.20130.x
15 sg:pub.10.1186/s12916-015-0430-4
16 sg:pub.10.2165/00002018-200225060-00001
17 sg:pub.10.2165/00002018-200427100-00004
18 sg:pub.10.2165/00002018-200629100-00005
19 sg:pub.10.2165/00002018-200932060-00007
20 schema:datePublished 2016-03-05
21 schema:datePublishedReg 2016-03-05
22 schema:description IntroductionMany serious drug adverse events (AEs) only manifest well after regulatory approval. Therefore, the development of signaling methods to use with post-approval AE databases appears vital to comprehensively assess real-world drug safety. However, with millions of potential drug–AE pairs to analyze, the issue of focus is daunting.ObjectiveOur objective was to develop a signaling platform that focuses on AEs with historically demonstrated regulatory interest and to analyze such AEs with a disproportional reporting method that offers broad signal detection and acceptable false-positive rates.MethodsWe analyzed over 1500 US FDA regulatory actions (safety communications and drug label changes) from 2008 to 2015 to construct a list of eligible signal AEs. The FDA Adverse Event Reporting System (FAERS) was used to evaluate disproportional reporting rates, constrained by minimum case counts and confidence interval limits, of these selected AEs for 109 training drugs. This step led to 45 AEs that appeared to have a low likelihood of being added to a label by FDA, so they were removed from the signal eligible list. We measured disproportional reporting for the final group of eligible AEs on a test group of 29 drugs that were not used in either the eligible list construction or the training steps.ResultsIn a group of 29 test drugs, our model reduced the number of potential drug–AE signals from 41,834 to 97 and predicted 73 % of individual drug label changes. The model also predicted at least one AE–drug pair label change in 66 % of all the label changes for the test drugs.ConclusionsBy concentrating on AE types with already demonstrated interest to FDA, we constructed a signaling system that provided focus regarding drug–AE pairs and suitable accuracy with regard to the issuance of FDA labeling changes. We suggest that focus on historical regulatory actions may increase the utility of pharmacovigilance signaling systems.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N36774b41efdd406b80884962dee68f79
27 Na997d26351b34ef286cbf0463eecf21a
28 sg:journal.1096281
29 schema:keywords AE database
30 AE types
31 AE–drug pair label change
32 Adverse Event Reporting System
33 ConclusionsBy
34 Event Reporting System
35 FDA
36 FDA Adverse Event Reporting System
37 FDA labeling changes
38 FDA regulatory actions
39 IntroductionMany serious drug adverse events
40 MethodsWe
41 ObjectiveOur objective
42 Pharmacovigilance Signaling System
43 ResultsIn
44 US FDA regulatory actions
45 acceptable false-positive rates
46 accuracy
47 action
48 adverse event reports
49 adverse events
50 approval
51 broad signal detection
52 case counts
53 changes
54 confidence interval limits
55 construction
56 counts
57 database
58 detection
59 development
60 disproportional reporting
61 disproportional reporting method
62 disproportional reporting rates
63 drug adverse events
64 drug label changes
65 drug safety
66 drug-AE pairs
67 drugs
68 drug–AE signals
69 eligible AEs
70 eligible list
71 eligible list construction
72 eligible signal AEs
73 event reports
74 events
75 false-positive rate
76 final group
77 focus
78 group
79 historical regulatory actions
80 individual drug label changes
81 interest
82 interval limits
83 issuance
84 issue of focus
85 issues
86 label changes
87 labeling changes
88 labels
89 likelihood
90 limit
91 list
92 list construction
93 lower likelihood
94 method
95 millions
96 minimum case counts
97 model
98 number
99 objective
100 pair label change
101 pairs
102 pharmacovigilance
103 platform
104 post-approval AE databases
105 post-marketing adverse event reports
106 potential drug–AE pairs
107 potential drug–AE signals
108 rate
109 real-world drug safety
110 regard
111 regulatory action
112 regulatory approval
113 regulatory interest
114 report
115 reporting
116 reporting methods
117 reporting rates
118 reporting system
119 safety
120 serious drug adverse events
121 signal AEs
122 signal detection
123 signal eligible list
124 signaling system
125 signals
126 step
127 such adverse events
128 suitable accuracy
129 system
130 test drug
131 test group
132 training drug
133 training step
134 types
135 utility
136 utility of pharmacovigilance
137 schema:name A Pharmacovigilance Signaling System Based on FDA Regulatory Action and Post-Marketing Adverse Event Reports
138 schema:pagination 561-575
139 schema:productId N0c7bb23969f441489324517e4ce54c9c
140 Nc312d70199554bdaa613377d0a95e5df
141 Neddedb9f4a0f428485c46eeea7ef388f
142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037488819
143 https://doi.org/10.1007/s40264-016-0409-x
144 schema:sdDatePublished 2021-11-01T18:27
145 schema:sdLicense https://scigraph.springernature.com/explorer/license/
146 schema:sdPublisher N4cda7e3c73ce45b687776d84bc6b4b40
147 schema:url https://doi.org/10.1007/s40264-016-0409-x
148 sgo:license sg:explorer/license/
149 sgo:sdDataset articles
150 rdf:type schema:ScholarlyArticle
151 N059234bd59dc40288442fadcce547252 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Pharmacovigilance
153 rdf:type schema:DefinedTerm
154 N0c7bb23969f441489324517e4ce54c9c schema:name doi
155 schema:value 10.1007/s40264-016-0409-x
156 rdf:type schema:PropertyValue
157 N0f7279cea5684997a00630d32e38cdc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Drug Approval
159 rdf:type schema:DefinedTerm
160 N10fd395e0fd74afdafb815ff1ca1f5bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Databases, Factual
162 rdf:type schema:DefinedTerm
163 N2779d09558fb4a7b926c68be15d47964 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name United States Food and Drug Administration
165 rdf:type schema:DefinedTerm
166 N36774b41efdd406b80884962dee68f79 schema:issueNumber 6
167 rdf:type schema:PublicationIssue
168 N3d2c0a53b418453fafd052034ce3bfdd rdf:first sg:person.0743435467.02
169 rdf:rest N7ac8b03270274871937bc1eeb748c4d6
170 N44e0ba2c1ae34e18bdc0e9cbefe6edc0 rdf:first sg:person.01254120767.56
171 rdf:rest rdf:nil
172 N4cda7e3c73ce45b687776d84bc6b4b40 schema:name Springer Nature - SN SciGraph project
173 rdf:type schema:Organization
174 N7ac8b03270274871937bc1eeb748c4d6 rdf:first sg:person.0651210417.29
175 rdf:rest N44e0ba2c1ae34e18bdc0e9cbefe6edc0
176 Na566905c803a48deb8075fbeef401fcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Humans
178 rdf:type schema:DefinedTerm
179 Na997d26351b34ef286cbf0463eecf21a schema:volumeNumber 39
180 rdf:type schema:PublicationVolume
181 Nc10dc4a35e1f40db9e9274ee40918911 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Adverse Drug Reaction Reporting Systems
183 rdf:type schema:DefinedTerm
184 Nc312d70199554bdaa613377d0a95e5df schema:name dimensions_id
185 schema:value pub.1037488819
186 rdf:type schema:PropertyValue
187 Ncd55c035e38742af8979bc637b436587 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name United States
189 rdf:type schema:DefinedTerm
190 Nd3e3896ddbb442c89c597711625ed5ef rdf:first sg:person.01140725314.30
191 rdf:rest N3d2c0a53b418453fafd052034ce3bfdd
192 Neddd7ad3e7ac4f4c8982d15cba3dfcb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Product Surveillance, Postmarketing
194 rdf:type schema:DefinedTerm
195 Neddedb9f4a0f428485c46eeea7ef388f schema:name pubmed_id
196 schema:value 26946292
197 rdf:type schema:PropertyValue
198 Nf52c046ed8594ce98622c89a828eab3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Drug-Related Side Effects and Adverse Reactions
200 rdf:type schema:DefinedTerm
201 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
202 schema:name Medical and Health Sciences
203 rdf:type schema:DefinedTerm
204 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
205 schema:name Public Health and Health Services
206 rdf:type schema:DefinedTerm
207 sg:grant.3801821 http://pending.schema.org/fundedItem sg:pub.10.1007/s40264-016-0409-x
208 rdf:type schema:MonetaryGrant
209 sg:journal.1096281 schema:issn 0114-5916
210 1179-1942
211 schema:name Drug Safety
212 schema:publisher Springer Nature
213 rdf:type schema:Periodical
214 sg:person.01140725314.30 schema:affiliation grid-institutes:None
215 schema:familyName Hoffman
216 schema:givenName Keith B.
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140725314.30
218 rdf:type schema:Person
219 sg:person.01254120767.56 schema:affiliation grid-institutes:None
220 schema:familyName Kyle
221 schema:givenName Robert F.
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254120767.56
223 rdf:type schema:Person
224 sg:person.0651210417.29 schema:affiliation grid-institutes:grid.21729.3f
225 schema:familyName Tatonetti
226 schema:givenName Nicholas P.
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651210417.29
228 rdf:type schema:Person
229 sg:person.0743435467.02 schema:affiliation grid-institutes:None
230 schema:familyName Dimbil
231 schema:givenName Mo
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743435467.02
233 rdf:type schema:Person
234 sg:pub.10.1007/s11673-011-9342-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1039075914
235 https://doi.org/10.1007/s11673-011-9342-y
236 rdf:type schema:CreativeWork
237 sg:pub.10.1046/j.1525-1497.2003.20130.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039330498
238 https://doi.org/10.1046/j.1525-1497.2003.20130.x
239 rdf:type schema:CreativeWork
240 sg:pub.10.1186/s12916-015-0430-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034690267
241 https://doi.org/10.1186/s12916-015-0430-4
242 rdf:type schema:CreativeWork
243 sg:pub.10.2165/00002018-200225060-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038023122
244 https://doi.org/10.2165/00002018-200225060-00001
245 rdf:type schema:CreativeWork
246 sg:pub.10.2165/00002018-200427100-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051799890
247 https://doi.org/10.2165/00002018-200427100-00004
248 rdf:type schema:CreativeWork
249 sg:pub.10.2165/00002018-200629100-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047870213
250 https://doi.org/10.2165/00002018-200629100-00005
251 rdf:type schema:CreativeWork
252 sg:pub.10.2165/00002018-200932060-00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031905666
253 https://doi.org/10.2165/00002018-200932060-00007
254 rdf:type schema:CreativeWork
255 grid-institutes:None schema:alternateName Advera Health Analytics, Inc., 3663 N. Laughlin Road, Suite 102, 95403, Santa Rosa, CA, USA
256 schema:name Advera Health Analytics, Inc., 3663 N. Laughlin Road, Suite 102, 95403, Santa Rosa, CA, USA
257 rdf:type schema:Organization
258 grid-institutes:grid.21729.3f schema:alternateName Department of Biomedical Informatics, Columbia University, New York, USA
259 schema:name Department of Biomedical Informatics, Columbia University, New York, USA
260 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...