An Integrative Data Science Pipeline to Identify Novel Drug Interactions that Prolong the QT Interval View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-02-10

AUTHORS

Tal Lorberbaum, Kevin J. Sampson, Raymond L. Woosley, Robert S. Kass, Nicholas P. Tatonetti

ABSTRACT

INTRODUCTION: Drug-induced prolongation of the QT interval on the electrocardiogram (long QT syndrome, LQTS) can lead to a potentially fatal ventricular arrhythmia known as torsades de pointes (TdP). Over 40 drugs with both cardiac and non-cardiac indications are associated with increased risk of TdP, but drug-drug interactions contributing to LQTS (QT-DDIs) remain poorly characterized. Traditional methods for mining observational healthcare data are poorly equipped to detect QT-DDI signals due to low reporting numbers and lack of direct evidence for LQTS. OBJECTIVE: We hypothesized that LQTS could be identified latently using an adverse event (AE) fingerprint of more commonly reported AEs. We aimed to generate an integrated data science pipeline that addresses current limitations by identifying latent signals for QT-DDIs in the US FDA's Adverse Event Reporting System (FAERS) and retrospectively validating these predictions using electrocardiogram data in electronic health records (EHRs). METHODS: We trained a model to identify an AE fingerprint for risk of TdP for single drugs and applied this model to drug pair data to predict novel DDIs. In the EHR at Columbia University Medical Center, we compared the QTc intervals of patients prescribed the flagged drug pairs with patients prescribed either drug individually. RESULTS: We created an AE fingerprint consisting of 13 latently detected side effects. This model significantly outperformed a direct evidence control model in the detection of established interactions (p = 1.62E-3) and significantly enriched for validated QT-DDIs in the EHR (p = 0.01). Of 889 pairs flagged in FAERS, eight novel QT-DDIs were significantly associated with prolonged QTc intervals in the EHR and were not due to co-prescribed medications. CONCLUSIONS: Latent signal detection in FAERS validated using the EHR presents an automated and data-driven approach for systematically identifying novel QT-DDIs. The high-confidence hypotheses flagged using this method warrant further investigation. More... »

PAGES

433-441

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40264-016-0393-1

DOI

http://dx.doi.org/10.1007/s40264-016-0393-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009515741

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26860921


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1115", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pharmacology and Pharmaceutical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Mining", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Interactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug-Related Side Effects and Adverse Reactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrocardiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electronic Health Records", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Long QT Syndrome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Torsades de Pointes", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departments of Systems Biology and Medicine, Columbia University, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Physiology and Cellular Biophysics, Columbia University, New York, NY USA", 
            "Department of Biomedical Informatics, Columbia University, 622 West 168th St. PH20, New York, NY 10032 USA", 
            "Departments of Systems Biology and Medicine, Columbia University, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lorberbaum", 
        "givenName": "Tal", 
        "id": "sg:person.01000103640.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000103640.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pharmacology, Columbia University, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Pharmacology, Columbia University, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sampson", 
        "givenName": "Kevin J.", 
        "id": "sg:person.013364067627.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013364067627.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AZCERT, Inc., Oro Valley, AZ USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "AZCERT, Inc., Oro Valley, AZ USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Woosley", 
        "givenName": "Raymond L.", 
        "id": "sg:person.01107263537.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107263537.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pharmacology, Columbia University, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Pharmacology, Columbia University, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kass", 
        "givenName": "Robert S.", 
        "id": "sg:person.01231760077.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231760077.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Observational Health Data Science and Informatics, New York, NY USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Biomedical Informatics, Columbia University, 622 West 168th St. PH20, New York, NY 10032 USA", 
            "Departments of Systems Biology and Medicine, Columbia University, New York, NY USA", 
            "Observational Health Data Science and Informatics, New York, NY USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tatonetti", 
        "givenName": "Nicholas P.", 
        "id": "sg:person.0651210417.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651210417.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/clpt.2011.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018479914", 
          "https://doi.org/10.1038/clpt.2011.83"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021233112", 
          "https://doi.org/10.1038/nrd1108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrcardio.2013.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017090213", 
          "https://doi.org/10.1038/nrcardio.2013.57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/clpt.2009.198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033421585", 
          "https://doi.org/10.1038/clpt.2009.198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-s9-s7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021246107", 
          "https://doi.org/10.1186/1471-2105-11-s9-s7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00002018-200225060-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038023122", 
          "https://doi.org/10.2165/00002018-200225060-00001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014582441", 
          "https://doi.org/10.1186/1471-2105-12-77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40264-013-0053-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038016315", 
          "https://doi.org/10.1007/s40264-013-0053-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02-10", 
    "datePublishedReg": "2016-02-10", 
    "description": "INTRODUCTION: Drug-induced prolongation of the QT interval on the electrocardiogram (long QT syndrome, LQTS) can lead to a potentially fatal ventricular arrhythmia known as torsades de pointes (TdP). Over 40 drugs with both cardiac and non-cardiac indications are associated with increased risk of TdP, but drug-drug interactions contributing to LQTS (QT-DDIs) remain poorly characterized. Traditional methods for mining observational healthcare data are poorly equipped to detect QT-DDI signals due to low reporting numbers and lack of direct evidence for LQTS.\nOBJECTIVE: We hypothesized that LQTS could be identified latently using an adverse event (AE) fingerprint of more commonly reported AEs. We aimed to generate an integrated data science pipeline that addresses current limitations by identifying latent signals for QT-DDIs in the US FDA's Adverse Event Reporting System (FAERS) and retrospectively validating these predictions using electrocardiogram data in electronic health records (EHRs).\nMETHODS: We trained a model to identify an AE fingerprint for risk of TdP for single drugs and applied this model to drug pair data to predict novel DDIs. In the EHR at Columbia University Medical Center, we compared the QTc intervals of patients prescribed the flagged drug pairs with patients prescribed either drug individually.\nRESULTS: We created an AE fingerprint consisting of 13 latently detected side effects. This model significantly outperformed a direct evidence control model in the detection of established interactions (p\u00a0=\u00a01.62E-3) and significantly enriched for validated QT-DDIs in the EHR (p\u00a0=\u00a00.01). Of 889 pairs flagged in FAERS, eight novel QT-DDIs were significantly associated with prolonged QTc intervals in the EHR and were not due to co-prescribed medications.\nCONCLUSIONS: Latent signal detection in FAERS validated using the EHR presents an automated and data-driven approach for systematically identifying novel QT-DDIs. The high-confidence hypotheses flagged using this method warrant further investigation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40264-016-0393-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2684145", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3535001", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5504703", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3801821", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1096281", 
        "issn": [
          "0114-5916", 
          "1179-1942"
        ], 
        "name": "Drug Safety", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "keywords": [
      "FDA Adverse Event Reporting System", 
      "electronic health records", 
      "risk of TdP", 
      "Adverse Event Reporting System", 
      "QT-DDIs", 
      "QTc interval", 
      "QT interval", 
      "Columbia University Medical Center", 
      "non-cardiac indications", 
      "co-prescribed medications", 
      "drug-induced prolongation", 
      "prolonged QTc interval", 
      "fatal ventricular arrhythmias", 
      "University Medical Center", 
      "drug-drug interactions", 
      "Event Reporting System", 
      "US FDA Adverse Event Reporting System", 
      "novel drug interaction", 
      "ventricular arrhythmias", 
      "observational healthcare data", 
      "drug interactions", 
      "Medical Center", 
      "single drug", 
      "side effects", 
      "health records", 
      "LQTS", 
      "drug pairs", 
      "drugs", 
      "patients", 
      "reporting system", 
      "further investigation", 
      "risk", 
      "TdP", 
      "electrocardiogram data", 
      "intervals", 
      "torsades", 
      "medications", 
      "pointes", 
      "arrhythmias", 
      "prolongation", 
      "direct evidence", 
      "ddI", 
      "electrocardiogram", 
      "healthcare data", 
      "indications", 
      "prolongs", 
      "data", 
      "evidence", 
      "records", 
      "center", 
      "detection", 
      "lack", 
      "effect", 
      "current limitations", 
      "hypothesis", 
      "number", 
      "model", 
      "interaction", 
      "investigation", 
      "method", 
      "limitations", 
      "signals", 
      "data-driven approach", 
      "pairs", 
      "latent signal", 
      "approach", 
      "fingerprints", 
      "system", 
      "data science pipeline", 
      "traditional methods", 
      "pair data", 
      "signal detection", 
      "AES", 
      "prediction", 
      "pipeline", 
      "control model", 
      "science pipeline", 
      "QT-DDI signals", 
      "low reporting numbers", 
      "reporting numbers", 
      "adverse event (AE) fingerprint", 
      "event (AE) fingerprint", 
      "AE fingerprint", 
      "drug pair data", 
      "novel DDIs", 
      "direct evidence control model", 
      "evidence control model", 
      "QT-DDIs", 
      "novel QT-DDIs", 
      "Latent signal detection", 
      "high-confidence hypotheses", 
      "Integrative Data Science Pipeline"
    ], 
    "name": "An Integrative Data Science Pipeline to Identify Novel Drug Interactions that Prolong the QT Interval", 
    "pagination": "433-441", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009515741"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40264-016-0393-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26860921"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40264-016-0393-1", 
      "https://app.dimensions.ai/details/publication/pub.1009515741"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_719.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40264-016-0393-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40264-016-0393-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40264-016-0393-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40264-016-0393-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40264-016-0393-1'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      22 PREDICATES      136 URIs      120 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40264-016-0393-1 schema:about N211d55e8ba9c4c0c8beb2fd8bad79aad
2 N2e496e6fcb8a4d09b8dc08c91498f744
3 N32d37c4319a744e79ebc5e3c6d5634a8
4 N3413ec31b4614bebba98e151084277fc
5 N3b81dd4acaae4c40a5936b60f733a417
6 N415213cf50b941d090c38a8eb86c3992
7 N7334b682ca0344158edbe80044fc427c
8 N739762cb3f3f4891b1c00216a8da8d55
9 N9c463d70deaa4d77898cbabed881ad50
10 Nb7537897dae045128913229878ed0872
11 Nd02c840f91ed4a14b4d0808dbfb6b5ad
12 anzsrc-for:11
13 anzsrc-for:1115
14 schema:author Ne0bb5fda657c49589add70342935ba2b
15 schema:citation sg:pub.10.1007/s40264-013-0053-7
16 sg:pub.10.1038/clpt.2009.198
17 sg:pub.10.1038/clpt.2011.83
18 sg:pub.10.1038/nrcardio.2013.57
19 sg:pub.10.1038/nrd1108
20 sg:pub.10.1186/1471-2105-11-s9-s7
21 sg:pub.10.1186/1471-2105-12-77
22 sg:pub.10.2165/00002018-200225060-00001
23 schema:datePublished 2016-02-10
24 schema:datePublishedReg 2016-02-10
25 schema:description INTRODUCTION: Drug-induced prolongation of the QT interval on the electrocardiogram (long QT syndrome, LQTS) can lead to a potentially fatal ventricular arrhythmia known as torsades de pointes (TdP). Over 40 drugs with both cardiac and non-cardiac indications are associated with increased risk of TdP, but drug-drug interactions contributing to LQTS (QT-DDIs) remain poorly characterized. Traditional methods for mining observational healthcare data are poorly equipped to detect QT-DDI signals due to low reporting numbers and lack of direct evidence for LQTS. OBJECTIVE: We hypothesized that LQTS could be identified latently using an adverse event (AE) fingerprint of more commonly reported AEs. We aimed to generate an integrated data science pipeline that addresses current limitations by identifying latent signals for QT-DDIs in the US FDA's Adverse Event Reporting System (FAERS) and retrospectively validating these predictions using electrocardiogram data in electronic health records (EHRs). METHODS: We trained a model to identify an AE fingerprint for risk of TdP for single drugs and applied this model to drug pair data to predict novel DDIs. In the EHR at Columbia University Medical Center, we compared the QTc intervals of patients prescribed the flagged drug pairs with patients prescribed either drug individually. RESULTS: We created an AE fingerprint consisting of 13 latently detected side effects. This model significantly outperformed a direct evidence control model in the detection of established interactions (p = 1.62E-3) and significantly enriched for validated QT-DDIs in the EHR (p = 0.01). Of 889 pairs flagged in FAERS, eight novel QT-DDIs were significantly associated with prolonged QTc intervals in the EHR and were not due to co-prescribed medications. CONCLUSIONS: Latent signal detection in FAERS validated using the EHR presents an automated and data-driven approach for systematically identifying novel QT-DDIs. The high-confidence hypotheses flagged using this method warrant further investigation.
26 schema:genre article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf N427b67f477684d26be92a6215e0c4b9e
30 Ne9e887afef7d401bab680bdc759c600d
31 sg:journal.1096281
32 schema:keywords AE fingerprint
33 AES
34 Adverse Event Reporting System
35 Columbia University Medical Center
36 Event Reporting System
37 FDA Adverse Event Reporting System
38 Integrative Data Science Pipeline
39 LQTS
40 Latent signal detection
41 Medical Center
42 QT interval
43 QT-DDI signals
44 QT-DDIs
45 QTc interval
46 TdP
47 US FDA Adverse Event Reporting System
48 University Medical Center
49 adverse event (AE) fingerprint
50 approach
51 arrhythmias
52 center
53 co-prescribed medications
54 control model
55 current limitations
56 data
57 data science pipeline
58 data-driven approach
59 ddI
60 detection
61 direct evidence
62 direct evidence control model
63 drug interactions
64 drug pair data
65 drug pairs
66 drug-drug interactions
67 drug-induced prolongation
68 drugs
69 effect
70 electrocardiogram
71 electrocardiogram data
72 electronic health records
73 event (AE) fingerprint
74 evidence
75 evidence control model
76 fatal ventricular arrhythmias
77 fingerprints
78 further investigation
79 health records
80 healthcare data
81 high-confidence hypotheses
82 hypothesis
83 indications
84 interaction
85 intervals
86 investigation
87 lack
88 latent signal
89 limitations
90 low reporting numbers
91 medications
92 method
93 model
94 non-cardiac indications
95 novel DDIs
96 novel QT-DDIs
97 novel drug interaction
98 number
99 observational healthcare data
100 pair data
101 pairs
102 patients
103 pipeline
104 pointes
105 prediction
106 prolongation
107 prolonged QTc interval
108 prolongs
109 records
110 reporting numbers
111 reporting system
112 risk
113 risk of TdP
114 science pipeline
115 side effects
116 signal detection
117 signals
118 single drug
119 system
120 torsades
121 traditional methods
122 ventricular arrhythmias
123 schema:name An Integrative Data Science Pipeline to Identify Novel Drug Interactions that Prolong the QT Interval
124 schema:pagination 433-441
125 schema:productId N68d0e1b92c8a4a46853cf7c12397b993
126 Nb1ce58d4c1c24073868ec70dc3eea302
127 Nd8034915879249c0beee5e66e4fcae78
128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009515741
129 https://doi.org/10.1007/s40264-016-0393-1
130 schema:sdDatePublished 2021-11-01T18:29
131 schema:sdLicense https://scigraph.springernature.com/explorer/license/
132 schema:sdPublisher Nc3fd10e04de34eabb5ba43b4982fc594
133 schema:url https://doi.org/10.1007/s40264-016-0393-1
134 sgo:license sg:explorer/license/
135 sgo:sdDataset articles
136 rdf:type schema:ScholarlyArticle
137 N0dcadc04f47d44068983eda284568098 rdf:first sg:person.013364067627.77
138 rdf:rest Nbc49e1123f464c31b5d70ef623986ece
139 N211d55e8ba9c4c0c8beb2fd8bad79aad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Long QT Syndrome
141 rdf:type schema:DefinedTerm
142 N2e496e6fcb8a4d09b8dc08c91498f744 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Risk Factors
144 rdf:type schema:DefinedTerm
145 N32d37c4319a744e79ebc5e3c6d5634a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Electrocardiography
147 rdf:type schema:DefinedTerm
148 N3413ec31b4614bebba98e151084277fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Humans
150 rdf:type schema:DefinedTerm
151 N3b81dd4acaae4c40a5936b60f733a417 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Drug-Related Side Effects and Adverse Reactions
153 rdf:type schema:DefinedTerm
154 N415213cf50b941d090c38a8eb86c3992 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Data Mining
156 rdf:type schema:DefinedTerm
157 N427b67f477684d26be92a6215e0c4b9e schema:issueNumber 5
158 rdf:type schema:PublicationIssue
159 N4f73e2c07d9142fbaf761dc618bfb726 rdf:first sg:person.01231760077.11
160 rdf:rest N56fa1c1340f4439bb59f505c2b1fed72
161 N56fa1c1340f4439bb59f505c2b1fed72 rdf:first sg:person.0651210417.29
162 rdf:rest rdf:nil
163 N68d0e1b92c8a4a46853cf7c12397b993 schema:name dimensions_id
164 schema:value pub.1009515741
165 rdf:type schema:PropertyValue
166 N7334b682ca0344158edbe80044fc427c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Torsades de Pointes
168 rdf:type schema:DefinedTerm
169 N739762cb3f3f4891b1c00216a8da8d55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Electronic Health Records
171 rdf:type schema:DefinedTerm
172 N9c463d70deaa4d77898cbabed881ad50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Male
174 rdf:type schema:DefinedTerm
175 Nb1ce58d4c1c24073868ec70dc3eea302 schema:name pubmed_id
176 schema:value 26860921
177 rdf:type schema:PropertyValue
178 Nb7537897dae045128913229878ed0872 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Drug Interactions
180 rdf:type schema:DefinedTerm
181 Nbc49e1123f464c31b5d70ef623986ece rdf:first sg:person.01107263537.70
182 rdf:rest N4f73e2c07d9142fbaf761dc618bfb726
183 Nc3fd10e04de34eabb5ba43b4982fc594 schema:name Springer Nature - SN SciGraph project
184 rdf:type schema:Organization
185 Nd02c840f91ed4a14b4d0808dbfb6b5ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Female
187 rdf:type schema:DefinedTerm
188 Nd8034915879249c0beee5e66e4fcae78 schema:name doi
189 schema:value 10.1007/s40264-016-0393-1
190 rdf:type schema:PropertyValue
191 Ne0bb5fda657c49589add70342935ba2b rdf:first sg:person.01000103640.95
192 rdf:rest N0dcadc04f47d44068983eda284568098
193 Ne9e887afef7d401bab680bdc759c600d schema:volumeNumber 39
194 rdf:type schema:PublicationVolume
195 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
196 schema:name Medical and Health Sciences
197 rdf:type schema:DefinedTerm
198 anzsrc-for:1115 schema:inDefinedTermSet anzsrc-for:
199 schema:name Pharmacology and Pharmaceutical Sciences
200 rdf:type schema:DefinedTerm
201 sg:grant.2684145 http://pending.schema.org/fundedItem sg:pub.10.1007/s40264-016-0393-1
202 rdf:type schema:MonetaryGrant
203 sg:grant.3535001 http://pending.schema.org/fundedItem sg:pub.10.1007/s40264-016-0393-1
204 rdf:type schema:MonetaryGrant
205 sg:grant.3801821 http://pending.schema.org/fundedItem sg:pub.10.1007/s40264-016-0393-1
206 rdf:type schema:MonetaryGrant
207 sg:grant.5504703 http://pending.schema.org/fundedItem sg:pub.10.1007/s40264-016-0393-1
208 rdf:type schema:MonetaryGrant
209 sg:journal.1096281 schema:issn 0114-5916
210 1179-1942
211 schema:name Drug Safety
212 schema:publisher Springer Nature
213 rdf:type schema:Periodical
214 sg:person.01000103640.95 schema:affiliation grid-institutes:grid.21729.3f
215 schema:familyName Lorberbaum
216 schema:givenName Tal
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000103640.95
218 rdf:type schema:Person
219 sg:person.01107263537.70 schema:affiliation grid-institutes:None
220 schema:familyName Woosley
221 schema:givenName Raymond L.
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107263537.70
223 rdf:type schema:Person
224 sg:person.01231760077.11 schema:affiliation grid-institutes:grid.21729.3f
225 schema:familyName Kass
226 schema:givenName Robert S.
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231760077.11
228 rdf:type schema:Person
229 sg:person.013364067627.77 schema:affiliation grid-institutes:grid.21729.3f
230 schema:familyName Sampson
231 schema:givenName Kevin J.
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013364067627.77
233 rdf:type schema:Person
234 sg:person.0651210417.29 schema:affiliation grid-institutes:None
235 schema:familyName Tatonetti
236 schema:givenName Nicholas P.
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651210417.29
238 rdf:type schema:Person
239 sg:pub.10.1007/s40264-013-0053-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038016315
240 https://doi.org/10.1007/s40264-013-0053-7
241 rdf:type schema:CreativeWork
242 sg:pub.10.1038/clpt.2009.198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033421585
243 https://doi.org/10.1038/clpt.2009.198
244 rdf:type schema:CreativeWork
245 sg:pub.10.1038/clpt.2011.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018479914
246 https://doi.org/10.1038/clpt.2011.83
247 rdf:type schema:CreativeWork
248 sg:pub.10.1038/nrcardio.2013.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017090213
249 https://doi.org/10.1038/nrcardio.2013.57
250 rdf:type schema:CreativeWork
251 sg:pub.10.1038/nrd1108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021233112
252 https://doi.org/10.1038/nrd1108
253 rdf:type schema:CreativeWork
254 sg:pub.10.1186/1471-2105-11-s9-s7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021246107
255 https://doi.org/10.1186/1471-2105-11-s9-s7
256 rdf:type schema:CreativeWork
257 sg:pub.10.1186/1471-2105-12-77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014582441
258 https://doi.org/10.1186/1471-2105-12-77
259 rdf:type schema:CreativeWork
260 sg:pub.10.2165/00002018-200225060-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038023122
261 https://doi.org/10.2165/00002018-200225060-00001
262 rdf:type schema:CreativeWork
263 grid-institutes:None schema:alternateName AZCERT, Inc., Oro Valley, AZ USA
264 Observational Health Data Science and Informatics, New York, NY USA
265 schema:name AZCERT, Inc., Oro Valley, AZ USA
266 Department of Biomedical Informatics, Columbia University, 622 West 168th St. PH20, New York, NY 10032 USA
267 Departments of Systems Biology and Medicine, Columbia University, New York, NY USA
268 Observational Health Data Science and Informatics, New York, NY USA
269 rdf:type schema:Organization
270 grid-institutes:grid.21729.3f schema:alternateName Department of Pharmacology, Columbia University, New York, NY USA
271 Departments of Systems Biology and Medicine, Columbia University, New York, NY USA
272 schema:name Department of Biomedical Informatics, Columbia University, 622 West 168th St. PH20, New York, NY 10032 USA
273 Department of Pharmacology, Columbia University, New York, NY USA
274 Department of Physiology and Cellular Biophysics, Columbia University, New York, NY USA
275 Departments of Systems Biology and Medicine, Columbia University, New York, NY USA
276 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...