Measuring Efficiency of Health Systems of the Middle East and North Africa (MENA) Region Using Stochastic Frontier Analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-06

AUTHORS

Samer Hamidi, Fevzi Akinci

ABSTRACT

OBJECTIVE: The main purpose of this study is to measure the technical efficiency of twenty health systems in the Middle East and North Africa (MENA) region to inform evidence-based health policy decisions. In addition, the effects of alternative stochastic frontier model specification on the empirical results are examined. METHODS: We conducted a stochastic frontier analysis to estimate the country-level technical efficiencies using secondary panel data for 20 MENA countries for the period of 1995-2012 from the World Bank database. We also tested the effect of alternative frontier model specification using three random-effects approaches: a time-invariant model where efficiency effects are assumed to be static with regard to time, and a time-varying efficiency model where efficiency effects have temporal variation, and one model to account for heterogeneity. RESULTS: The average estimated technical inefficiency of health systems in the MENA region was 6.9 % with a range of 5.7-7.9 % across the three models. Among the top performers, Lebanon, Qatar, and Morocco are ranked consistently high according to the three different inefficiency model specifications. On the opposite side, Sudan, Yemen and Djibouti ranked among the worst performers. On average, the two most technically efficient countries were Qatar and Lebanon. We found that the estimated technical efficiency scores vary substantially across alternative parametric models. CONCLUSION: Based on the findings reported in this study, most MENA countries appear to be operating, on average, with a reasonably high degree of technical efficiency compared with other countries in the region. However, there is evidence to suggest that there are considerable efficiency gains yet to be made by some MENA countries. Additional empirical research is needed to inform future health policies aimed at improving both the efficiency and sustainability of the health systems in the MENA region. More... »

PAGES

337-347

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40258-016-0230-9

DOI

http://dx.doi.org/10.1007/s40258-016-0230-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045033881

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26914550


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Africa, Northern", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chronic Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Delivery of Health Care", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Efficiency, Organizational", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Financing, Personal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Expenditures", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Policy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Incidence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Life Expectancy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle East", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Public Health", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stochastic Processes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Supply", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "School of Health and Environmental Studies, Hamdan Bin Mohammad Smart University, Dubai, United Arab Emirates"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamidi", 
        "givenName": "Samer", 
        "id": "sg:person.01017423430.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017423430.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College", 
          "id": "https://www.grid.ac/institutes/grid.419785.6", 
          "name": [
            "Health Care Administration, The William G. McGowan School of Business, King\u2019s College, Wilkes-Barre, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akinci", 
        "givenName": "Fevzi", 
        "id": "sg:person.01213267056.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213267056.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0304-4076(77)90052-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006216324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2004.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006529047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(12)61728-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013705877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11123-004-8545-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015401194", 
          "https://doi.org/10.1007/s11123-004-8545-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4076(82)90004-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017399618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00158774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018912937", 
          "https://doi.org/10.1007/bf00158774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00158774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018912937", 
          "https://doi.org/10.1007/bf00158774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(12)61719-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025534845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01205442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029766433", 
          "https://doi.org/10.1007/bf01205442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01205442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029766433", 
          "https://doi.org/10.1007/bf01205442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2014.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032409870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(12)61689-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037992837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10389-005-0006-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044917480", 
          "https://doi.org/10.1007/s10389-005-0006-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10389-005-0006-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044917480", 
          "https://doi.org/10.1007/s10389-005-0006-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0161-8938(00)00036-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045898528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(78)90138-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046333076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(78)90138-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046333076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(06)68402-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047546594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4076(88)90053-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050796609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.323.7308.307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051369111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3923/jas.2012.153.160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051828090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0033-3549(04)50043-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054605050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2525757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069971904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139174411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098663805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2139/ssrn.2145803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102354913"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06", 
    "datePublishedReg": "2016-06-01", 
    "description": "OBJECTIVE: The main purpose of this study is to measure the technical efficiency of twenty health systems in the Middle East and North Africa (MENA) region to inform evidence-based health policy decisions. In addition, the effects of alternative stochastic frontier model specification on the empirical results are examined.\nMETHODS: We conducted a stochastic frontier analysis to estimate the country-level technical efficiencies using secondary panel data for 20 MENA countries for the period of 1995-2012 from the World Bank database. We also tested the effect of alternative frontier model specification using three random-effects approaches: a time-invariant model where efficiency effects are assumed to be static with regard to time, and a time-varying efficiency model where efficiency effects have temporal variation, and one model to account for heterogeneity.\nRESULTS: The average estimated technical inefficiency of health systems in the MENA region was 6.9\u00a0% with a range of 5.7-7.9\u00a0% across the three models. Among the top performers, Lebanon, Qatar, and Morocco are ranked consistently high according to the three different inefficiency model specifications. On the opposite side, Sudan, Yemen and Djibouti ranked among the worst performers. On average, the two most technically efficient countries were Qatar and Lebanon. We found that the estimated technical efficiency scores vary substantially across alternative parametric models.\nCONCLUSION: Based on the findings reported in this study, most MENA countries appear to be operating, on average, with a reasonably high degree of technical efficiency compared with other countries in the region. However, there is evidence to suggest that there are considerable efficiency gains yet to be made by some MENA countries. Additional empirical research is needed to inform future health policies aimed at improving both the efficiency and sustainability of the health systems in the MENA region.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40258-016-0230-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1031175", 
        "issn": [
          "1175-5652", 
          "1179-1896"
        ], 
        "name": "Applied Health Economics and Health Policy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Measuring Efficiency of Health Systems of the Middle East and North Africa (MENA) Region Using Stochastic Frontier Analysis", 
    "pagination": "337-347", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d682d36e1ba5e9db30741712418147ca7b3b346001818c3c98893d49337cb451"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26914550"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101150314"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40258-016-0230-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045033881"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40258-016-0230-9", 
      "https://app.dimensions.ai/details/publication/pub.1045033881"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs40258-016-0230-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40258-016-0230-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40258-016-0230-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40258-016-0230-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40258-016-0230-9'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      21 PREDICATES      70 URIs      41 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40258-016-0230-9 schema:about N0c2403de37164a8da68aac3b84eb934e
2 N193ef0b4be534bc492007e10714c1a2a
3 N26221a0a540e4f3f9787690ed603138a
4 N3658a35d4f524e1a8ba3c4c8d987d77e
5 N3d2885d586da4a1ba9fb7ddb78a7c20b
6 N42327e60e70647389a902236ddb2662c
7 N4b7f82b6f30c43fa8974edf5752b1ec9
8 N527c70f1a2ef46e487b1878572d12dd2
9 N5d0450c9b5cd46b6a33a7d617725f8f6
10 N64cc6e401d3545a9a6b9981b3931643a
11 N7220dca165bc4101a8a6bcb2906c8cf3
12 N9bf31439210e41819e6a2bfc025e4790
13 N9c2dce478f0c4488a53ed7d5d045f0a8
14 Naaebcaaf25b14b50bb038211e9aded27
15 Nb2cc86da079147adb750673edd80a631
16 Nb8ca6afb66b64ec6bfde850d7602e4fb
17 Ncab61425f3b4461e9665dd35a3b4e425
18 Ne138377912cb4fe4a192565306f3717c
19 Ne911da45b4cc4e2ba75c67a56cb8e655
20 Ned5a528dd4814d63acfbc192afc5fd29
21 anzsrc-for:14
22 anzsrc-for:1402
23 schema:author N8ab8155bc77840e8958438d9759dd7bc
24 schema:citation sg:pub.10.1007/bf00158774
25 sg:pub.10.1007/bf01205442
26 sg:pub.10.1007/s10389-005-0006-4
27 sg:pub.10.1007/s11123-004-8545-1
28 https://doi.org/10.1016/0304-4076(77)90052-5
29 https://doi.org/10.1016/0304-4076(82)90004-5
30 https://doi.org/10.1016/0304-4076(88)90053-x
31 https://doi.org/10.1016/0377-2217(78)90138-8
32 https://doi.org/10.1016/j.jeconom.2004.05.003
33 https://doi.org/10.1016/j.jeconom.2014.09.002
34 https://doi.org/10.1016/s0033-3549(04)50043-2
35 https://doi.org/10.1016/s0140-6736(06)68402-x
36 https://doi.org/10.1016/s0140-6736(12)61689-4
37 https://doi.org/10.1016/s0140-6736(12)61719-x
38 https://doi.org/10.1016/s0140-6736(12)61728-0
39 https://doi.org/10.1016/s0161-8938(00)00036-3
40 https://doi.org/10.1017/cbo9781139174411
41 https://doi.org/10.1136/bmj.323.7308.307
42 https://doi.org/10.2139/ssrn.2145803
43 https://doi.org/10.2307/2525757
44 https://doi.org/10.3923/jas.2012.153.160
45 schema:datePublished 2016-06
46 schema:datePublishedReg 2016-06-01
47 schema:description OBJECTIVE: The main purpose of this study is to measure the technical efficiency of twenty health systems in the Middle East and North Africa (MENA) region to inform evidence-based health policy decisions. In addition, the effects of alternative stochastic frontier model specification on the empirical results are examined. METHODS: We conducted a stochastic frontier analysis to estimate the country-level technical efficiencies using secondary panel data for 20 MENA countries for the period of 1995-2012 from the World Bank database. We also tested the effect of alternative frontier model specification using three random-effects approaches: a time-invariant model where efficiency effects are assumed to be static with regard to time, and a time-varying efficiency model where efficiency effects have temporal variation, and one model to account for heterogeneity. RESULTS: The average estimated technical inefficiency of health systems in the MENA region was 6.9 % with a range of 5.7-7.9 % across the three models. Among the top performers, Lebanon, Qatar, and Morocco are ranked consistently high according to the three different inefficiency model specifications. On the opposite side, Sudan, Yemen and Djibouti ranked among the worst performers. On average, the two most technically efficient countries were Qatar and Lebanon. We found that the estimated technical efficiency scores vary substantially across alternative parametric models. CONCLUSION: Based on the findings reported in this study, most MENA countries appear to be operating, on average, with a reasonably high degree of technical efficiency compared with other countries in the region. However, there is evidence to suggest that there are considerable efficiency gains yet to be made by some MENA countries. Additional empirical research is needed to inform future health policies aimed at improving both the efficiency and sustainability of the health systems in the MENA region.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf N41744056ca894ff9babfed9eefeafe39
52 Na762e2fc797541d4b151b09925cb405b
53 sg:journal.1031175
54 schema:name Measuring Efficiency of Health Systems of the Middle East and North Africa (MENA) Region Using Stochastic Frontier Analysis
55 schema:pagination 337-347
56 schema:productId N363038bba4f4432faa261d438db60144
57 N5989f1d6a6f345f1a1aa5d30dcf5fc6d
58 N7c29e0bbf768470b94426006c47107e3
59 N82a83af38b224ba7bc2f870c21703a46
60 Nae3f9b5878594ab08b39d0691ae12922
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045033881
62 https://doi.org/10.1007/s40258-016-0230-9
63 schema:sdDatePublished 2019-04-11T00:19
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Ne50cde79b3664fe6b578a6528395cc80
66 schema:url http://link.springer.com/10.1007%2Fs40258-016-0230-9
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N04c89768b75346aeadf9aabd5474d2f7 rdf:first sg:person.01213267056.58
71 rdf:rest rdf:nil
72 N0c2403de37164a8da68aac3b84eb934e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Financing, Personal
74 rdf:type schema:DefinedTerm
75 N193ef0b4be534bc492007e10714c1a2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Health Expenditures
77 rdf:type schema:DefinedTerm
78 N26221a0a540e4f3f9787690ed603138a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Middle East
80 rdf:type schema:DefinedTerm
81 N363038bba4f4432faa261d438db60144 schema:name pubmed_id
82 schema:value 26914550
83 rdf:type schema:PropertyValue
84 N3658a35d4f524e1a8ba3c4c8d987d77e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Adolescent
86 rdf:type schema:DefinedTerm
87 N3d2885d586da4a1ba9fb7ddb78a7c20b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Water Supply
89 rdf:type schema:DefinedTerm
90 N41744056ca894ff9babfed9eefeafe39 schema:volumeNumber 14
91 rdf:type schema:PublicationVolume
92 N42327e60e70647389a902236ddb2662c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Incidence
94 rdf:type schema:DefinedTerm
95 N4b7f82b6f30c43fa8974edf5752b1ec9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Public Health
97 rdf:type schema:DefinedTerm
98 N527c70f1a2ef46e487b1878572d12dd2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Female
100 rdf:type schema:DefinedTerm
101 N5989f1d6a6f345f1a1aa5d30dcf5fc6d schema:name readcube_id
102 schema:value d682d36e1ba5e9db30741712418147ca7b3b346001818c3c98893d49337cb451
103 rdf:type schema:PropertyValue
104 N5d0450c9b5cd46b6a33a7d617725f8f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Life Expectancy
106 rdf:type schema:DefinedTerm
107 N64cc6e401d3545a9a6b9981b3931643a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Africa, Northern
109 rdf:type schema:DefinedTerm
110 N7220dca165bc4101a8a6bcb2906c8cf3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Stochastic Processes
112 rdf:type schema:DefinedTerm
113 N7c29e0bbf768470b94426006c47107e3 schema:name nlm_unique_id
114 schema:value 101150314
115 rdf:type schema:PropertyValue
116 N82a83af38b224ba7bc2f870c21703a46 schema:name doi
117 schema:value 10.1007/s40258-016-0230-9
118 rdf:type schema:PropertyValue
119 N8ab8155bc77840e8958438d9759dd7bc rdf:first sg:person.01017423430.67
120 rdf:rest N04c89768b75346aeadf9aabd5474d2f7
121 N9bf31439210e41819e6a2bfc025e4790 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Chronic Disease
123 rdf:type schema:DefinedTerm
124 N9c2dce478f0c4488a53ed7d5d045f0a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Middle Aged
126 rdf:type schema:DefinedTerm
127 Na762e2fc797541d4b151b09925cb405b schema:issueNumber 3
128 rdf:type schema:PublicationIssue
129 Naaebcaaf25b14b50bb038211e9aded27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Delivery of Health Care
131 rdf:type schema:DefinedTerm
132 Nae3f9b5878594ab08b39d0691ae12922 schema:name dimensions_id
133 schema:value pub.1045033881
134 rdf:type schema:PropertyValue
135 Nb2cc86da079147adb750673edd80a631 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Health Policy
137 rdf:type schema:DefinedTerm
138 Nb8ca6afb66b64ec6bfde850d7602e4fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Efficiency, Organizational
140 rdf:type schema:DefinedTerm
141 Ncab61425f3b4461e9665dd35a3b4e425 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Young Adult
143 rdf:type schema:DefinedTerm
144 Ne138377912cb4fe4a192565306f3717c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Adult
146 rdf:type schema:DefinedTerm
147 Ne331d0f0329c44f784d9addab3119c80 schema:name School of Health and Environmental Studies, Hamdan Bin Mohammad Smart University, Dubai, United Arab Emirates
148 rdf:type schema:Organization
149 Ne50cde79b3664fe6b578a6528395cc80 schema:name Springer Nature - SN SciGraph project
150 rdf:type schema:Organization
151 Ne911da45b4cc4e2ba75c67a56cb8e655 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Humans
153 rdf:type schema:DefinedTerm
154 Ned5a528dd4814d63acfbc192afc5fd29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Male
156 rdf:type schema:DefinedTerm
157 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
158 schema:name Economics
159 rdf:type schema:DefinedTerm
160 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
161 schema:name Applied Economics
162 rdf:type schema:DefinedTerm
163 sg:journal.1031175 schema:issn 1175-5652
164 1179-1896
165 schema:name Applied Health Economics and Health Policy
166 rdf:type schema:Periodical
167 sg:person.01017423430.67 schema:affiliation Ne331d0f0329c44f784d9addab3119c80
168 schema:familyName Hamidi
169 schema:givenName Samer
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017423430.67
171 rdf:type schema:Person
172 sg:person.01213267056.58 schema:affiliation https://www.grid.ac/institutes/grid.419785.6
173 schema:familyName Akinci
174 schema:givenName Fevzi
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213267056.58
176 rdf:type schema:Person
177 sg:pub.10.1007/bf00158774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018912937
178 https://doi.org/10.1007/bf00158774
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/bf01205442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029766433
181 https://doi.org/10.1007/bf01205442
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s10389-005-0006-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044917480
184 https://doi.org/10.1007/s10389-005-0006-4
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s11123-004-8545-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015401194
187 https://doi.org/10.1007/s11123-004-8545-1
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/0304-4076(77)90052-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006216324
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/0304-4076(82)90004-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017399618
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/0304-4076(88)90053-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050796609
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/0377-2217(78)90138-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046333076
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.jeconom.2004.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006529047
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.jeconom.2014.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032409870
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/s0033-3549(04)50043-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054605050
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/s0140-6736(06)68402-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047546594
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/s0140-6736(12)61689-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037992837
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/s0140-6736(12)61719-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025534845
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/s0140-6736(12)61728-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013705877
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/s0161-8938(00)00036-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045898528
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1017/cbo9781139174411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098663805
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1136/bmj.323.7308.307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051369111
216 rdf:type schema:CreativeWork
217 https://doi.org/10.2139/ssrn.2145803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102354913
218 rdf:type schema:CreativeWork
219 https://doi.org/10.2307/2525757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069971904
220 rdf:type schema:CreativeWork
221 https://doi.org/10.3923/jas.2012.153.160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051828090
222 rdf:type schema:CreativeWork
223 https://www.grid.ac/institutes/grid.419785.6 schema:alternateName King's College
224 schema:name Health Care Administration, The William G. McGowan School of Business, King’s College, Wilkes-Barre, USA
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...