Economic Analysis of Thrombo inCode, a Clinical–Genetic Function for Assessing the Risk of Venous Thromboembolism View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-02-05

AUTHORS

C. Rubio-Terrés, J. M. Soria, P. E. Morange, J. C. Souto, P. Suchon, J. Mateo, N. Saut, D. Rubio-Rodríguez, J. Sala, A. Gracia, S. Pich, E. Salas

ABSTRACT

BACKGROUND: Patients with venous thromboembolism (VTE) commonly have an underlying genetic predisposition. However, genetic tests nowadays in use have very low sensitivity for identifying subjects at risk of VTE. Thrombo inCode(®) is a new genetic tool that has demonstrated very good sensitivity, thanks to very good coverage of the genetic variants that modify the function of the coagulation pathway. OBJECTIVE: To conduct an economic analysis of risk assessment of VTE from the perspective of the Spanish National Health System with Thrombo inCode(®) (a clinical-genetic function for assessing the risk of VTE) versus the conventional/standard method used to date (factor V Leiden and prothrombin G20210A). METHODS: An economic model was created from the National Health System perspective, using a decision tree in patients aged 45 years with a life expectancy of 81 years. The predictive capacity of VTE, based on identification of thrombophilia using Thrombo inCode(®) and using the standard method, was obtained from two case-control studies conducted in two different populations (S. PAU and MARTHA; 1,451 patients in all). Although this is not always the case, patients who were identified as suffering from thrombophilia were subject to preventive treatment of VTE with warfarin, leading to a reduction in the number of VTE events and an increased risk of severe bleeding. The health state utilities (quality-adjusted life-years [QALYs]) and costs (in 2013 EUR values) were obtained from the literature and Spanish sources. RESULTS: On the basis of a price of EUR 180 for Thrombo inCode(®), this would be the dominant option (more effective and with lower costs than the standard method) in both populations. The Monte Carlo probabilistic analyses indicate that the dominance would occur in 100 % of the simulations in both populations. The threshold price of Thrombo inCode(®) needed to reach the incremental cost-effectiveness ratio (ICER) generally accepted in Spain (EUR 30,000 per QALY gained) would be between EUR 3,950 (in the MARTHA population) and EUR 11,993 (in the S. PAU population). CONCLUSION: According to the economic model, Thrombo inCode(®) is the dominant option in assessing the risk of VTE, compared with the standard method currently used. More... »

PAGES

233-242

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40258-015-0153-x

DOI

http://dx.doi.org/10.1007/s40258-015-0153-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018336592

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25652150


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cost-Benefit Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Decision Trees", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Testing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Economic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Venous Thromboembolism", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Health Value, C/-Virgen de Ar\u00e1nzazu, 21, 5\u00b0B, 28034 Madrid, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Health Value, C/-Virgen de Ar\u00e1nzazu, 21, 5\u00b0B, 28034 Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rubio-Terr\u00e9s", 
        "givenName": "C.", 
        "id": "sg:person.01264274321.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264274321.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unitat de Gen\u00f2mica de Malalties Complexes, IIB-Sant Pau, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Unitat de Gen\u00f2mica de Malalties Complexes, IIB-Sant Pau, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soria", 
        "givenName": "J. M.", 
        "id": "sg:person.012315061302.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012315061302.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aix-Marseille Universit\u00e9, Marseille, France", 
          "id": "http://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Inserm UMR_S 1062, 13385 Marseille, France", 
            "Aix-Marseille Universit\u00e9, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morange", 
        "givenName": "P. E.", 
        "id": "sg:person.0701215506.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701215506.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unitat d\u2019Hemostasia i Trombosis IIB-Sant Pau, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Unitat d\u2019Hemostasia i Trombosis IIB-Sant Pau, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Souto", 
        "givenName": "J. C.", 
        "id": "sg:person.010517165004.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010517165004.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ICAN Institute for Cardiometabolism and Nutrition, Universit\u00e9 Pierre et Marie Curie Paris 6, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "Inserm Unit\u00e9 Mixte de Recherche en Sant\u00e9 (UMR_S) 937, Paris, France", 
            "ICAN Institute for Cardiometabolism and Nutrition, Universit\u00e9 Pierre et Marie Curie Paris 6, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suchon", 
        "givenName": "P.", 
        "id": "sg:person.0717600224.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717600224.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unitat d\u2019Hemostasia i Trombosis IIB-Sant Pau, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Unitat d\u2019Hemostasia i Trombosis IIB-Sant Pau, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mateo", 
        "givenName": "J.", 
        "id": "sg:person.01046612235.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046612235.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ICAN Institute for Cardiometabolism and Nutrition, Universit\u00e9 Pierre et Marie Curie Paris 6, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "Inserm Unit\u00e9 Mixte de Recherche en Sant\u00e9 (UMR_S) 937, Paris, France", 
            "ICAN Institute for Cardiometabolism and Nutrition, Universit\u00e9 Pierre et Marie Curie Paris 6, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saut", 
        "givenName": "N.", 
        "id": "sg:person.01153046316.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153046316.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Value, C/-Virgen de Ar\u00e1nzazu, 21, 5\u00b0B, 28034 Madrid, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Health Value, C/-Virgen de Ar\u00e1nzazu, 21, 5\u00b0B, 28034 Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rubio-Rodr\u00edguez", 
        "givenName": "D.", 
        "id": "sg:person.01361262234.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361262234.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Scientific Department, Ferrer inCode, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Scientific Department, Ferrer inCode, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sala", 
        "givenName": "J.", 
        "id": "sg:person.01252743730.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252743730.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Scientific Department, Ferrer inCode, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Scientific Department, Ferrer inCode, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gracia", 
        "givenName": "A.", 
        "id": "sg:person.0734710053.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734710053.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Scientific Department, Gendiag.exe, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Scientific Department, Gendiag.exe, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pich", 
        "givenName": "S.", 
        "id": "sg:person.0612004016.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612004016.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Scientific Department, Gendiag.exe, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Scientific Department, Gendiag.exe, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salas", 
        "givenName": "E.", 
        "id": "sg:person.01003001726.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003001726.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf03320860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002980633", 
          "https://doi.org/10.1007/bf03320860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10198-003-0182-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047715908", 
          "https://doi.org/10.1007/s10198-003-0182-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1477-7525-1-54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023782676", 
          "https://doi.org/10.1186/1477-7525-1-54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1477-7525-1-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036510545", 
          "https://doi.org/10.1186/1477-7525-1-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-02-05", 
    "datePublishedReg": "2015-02-05", 
    "description": "BACKGROUND: Patients with venous thromboembolism (VTE) commonly have an underlying genetic predisposition. However, genetic tests nowadays in use have very low sensitivity for identifying subjects at risk of VTE. Thrombo inCode(\u00ae) is a new genetic tool that has demonstrated very good sensitivity, thanks to very good coverage of the genetic variants that modify the function of the coagulation pathway.\nOBJECTIVE: To conduct an economic analysis of risk assessment of VTE from the perspective of the Spanish National Health System with Thrombo inCode(\u00ae) (a clinical-genetic function for assessing the risk of VTE) versus the conventional/standard method used to date (factor V Leiden and prothrombin G20210A).\nMETHODS: An economic model was created from the National Health System perspective, using a decision tree in patients aged 45\u00a0years with a life expectancy of 81\u00a0years. The predictive capacity of VTE, based on identification of thrombophilia using Thrombo inCode(\u00ae) and using the standard method, was obtained from two case-control studies conducted in two different populations (S. PAU and MARTHA; 1,451 patients in all). Although this is not always the case, patients who were identified as suffering from thrombophilia were subject to preventive treatment of VTE with warfarin, leading to a reduction in the number of VTE events and an increased risk of severe bleeding. The health state utilities (quality-adjusted life-years [QALYs]) and costs (in 2013 EUR values) were obtained from the literature and Spanish sources.\nRESULTS: On the basis of a price of EUR 180 for Thrombo inCode(\u00ae), this would be the dominant option (more effective and with lower costs than the standard method) in both populations. The Monte Carlo probabilistic analyses indicate that the dominance would occur in 100\u00a0% of the simulations in both populations. The threshold price of Thrombo inCode(\u00ae) needed to reach the incremental cost-effectiveness ratio (ICER) generally accepted in Spain (EUR 30,000 per QALY gained) would be between EUR 3,950 (in the MARTHA population) and EUR 11,993 (in the S. PAU population).\nCONCLUSION: According to the economic model, Thrombo inCode(\u00ae) is the dominant option in assessing the risk of VTE, compared with the standard method currently used.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40258-015-0153-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031175", 
        "issn": [
          "1175-5652", 
          "1179-1896"
        ], 
        "name": "Applied Health Economics and Health Policy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "keywords": [
      "risk of VTE", 
      "incremental cost-effectiveness ratio", 
      "venous thromboembolism", 
      "National Health System perspective", 
      "Spanish National Health System", 
      "underlying genetic predisposition", 
      "case-control study", 
      "health system perspective", 
      "cost-effectiveness ratio", 
      "health state utilities", 
      "National Health System", 
      "VTE events", 
      "severe bleeding", 
      "preventive treatment", 
      "genetic predisposition", 
      "dominant option", 
      "coagulation pathway", 
      "patients", 
      "health system", 
      "life expectancy", 
      "thromboembolism", 
      "state utilities", 
      "thrombophilia", 
      "risk", 
      "genetic tests", 
      "genetic variants", 
      "standard methods", 
      "inCode", 
      "low sensitivity", 
      "different populations", 
      "Monte Carlo probabilistic analysis", 
      "population", 
      "bleeding", 
      "risk assessment", 
      "predictive capacity", 
      "warfarin", 
      "options", 
      "years", 
      "predisposition", 
      "good sensitivity", 
      "treatment", 
      "subjects", 
      "sensitivity", 
      "new genetic tools", 
      "expectancy", 
      "Spanish sources", 
      "pathway", 
      "assessment", 
      "function", 
      "cases", 
      "analysis", 
      "study", 
      "variants", 
      "test", 
      "reduction", 
      "events", 
      "date", 
      "utility", 
      "systems perspective", 
      "genetic tools", 
      "EUR", 
      "use", 
      "economic analysis", 
      "identification", 
      "literature", 
      "better coverage", 
      "method", 
      "number", 
      "ratio", 
      "model", 
      "capacity", 
      "coverage", 
      "threshold price", 
      "economic model", 
      "perspective", 
      "tool", 
      "Spain", 
      "basis", 
      "decision tree", 
      "cost", 
      "system", 
      "source", 
      "dominance", 
      "thanks", 
      "trees", 
      "probabilistic analysis", 
      "prices", 
      "simulations", 
      "Thrombo inCode", 
      "identification of thrombophilia", 
      "EUR 180", 
      "Carlo probabilistic analyses", 
      "Clinical\u2013Genetic Function"
    ], 
    "name": "Economic Analysis of Thrombo inCode, a Clinical\u2013Genetic Function for Assessing the Risk of Venous Thromboembolism", 
    "pagination": "233-242", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018336592"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40258-015-0153-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25652150"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40258-015-0153-x", 
      "https://app.dimensions.ai/details/publication/pub.1018336592"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_680.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40258-015-0153-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40258-015-0153-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40258-015-0153-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40258-015-0153-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40258-015-0153-x'


 

This table displays all metadata directly associated to this object as RDF triples.

332 TRIPLES      22 PREDICATES      140 URIs      128 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40258-015-0153-x schema:about N04c755eb2d704ec88c3aea3b3b7c2b19
2 N11eadad467594430a14e811d2034e752
3 N13290a159dea4c4ca2abaee4240c5abf
4 N20350c2f4c1a4fbb90a0563ec0649161
5 N3afbba81432045ffaee315d89078f690
6 N415cc5f6f0564030b37761fa4d471c04
7 N43ce7f25f7724fbdbdf4fdd4a7654d0a
8 N7e572908f7cc49bebd41a819332caafe
9 N84b02cb9995a4d81af9e0ba5b0226dfb
10 N89da5873664c46c5927d16cc9b76eed7
11 Na7e496f63dc7404a8c3dfff732a2d453
12 Nb638b608bfdd4ab48e71952d17f57cdd
13 Nc4491126b5db4443afb34f19c1cafed4
14 Nccbbe6329d524d168d32918509db47c3
15 Nd45175a56ca74c77969d0087b95d806e
16 Ne3e4103761c240e8aff3e7981ad6ded8
17 Neffd42c751a0487d8faf4787a21eb524
18 anzsrc-for:14
19 anzsrc-for:1402
20 schema:author Na76100c715da4106a65d79ade44cee23
21 schema:citation sg:pub.10.1007/bf03320860
22 sg:pub.10.1007/s10198-003-0182-5
23 sg:pub.10.1186/1477-7525-1-4
24 sg:pub.10.1186/1477-7525-1-54
25 schema:datePublished 2015-02-05
26 schema:datePublishedReg 2015-02-05
27 schema:description BACKGROUND: Patients with venous thromboembolism (VTE) commonly have an underlying genetic predisposition. However, genetic tests nowadays in use have very low sensitivity for identifying subjects at risk of VTE. Thrombo inCode(®) is a new genetic tool that has demonstrated very good sensitivity, thanks to very good coverage of the genetic variants that modify the function of the coagulation pathway. OBJECTIVE: To conduct an economic analysis of risk assessment of VTE from the perspective of the Spanish National Health System with Thrombo inCode(®) (a clinical-genetic function for assessing the risk of VTE) versus the conventional/standard method used to date (factor V Leiden and prothrombin G20210A). METHODS: An economic model was created from the National Health System perspective, using a decision tree in patients aged 45 years with a life expectancy of 81 years. The predictive capacity of VTE, based on identification of thrombophilia using Thrombo inCode(®) and using the standard method, was obtained from two case-control studies conducted in two different populations (S. PAU and MARTHA; 1,451 patients in all). Although this is not always the case, patients who were identified as suffering from thrombophilia were subject to preventive treatment of VTE with warfarin, leading to a reduction in the number of VTE events and an increased risk of severe bleeding. The health state utilities (quality-adjusted life-years [QALYs]) and costs (in 2013 EUR values) were obtained from the literature and Spanish sources. RESULTS: On the basis of a price of EUR 180 for Thrombo inCode(®), this would be the dominant option (more effective and with lower costs than the standard method) in both populations. The Monte Carlo probabilistic analyses indicate that the dominance would occur in 100 % of the simulations in both populations. The threshold price of Thrombo inCode(®) needed to reach the incremental cost-effectiveness ratio (ICER) generally accepted in Spain (EUR 30,000 per QALY gained) would be between EUR 3,950 (in the MARTHA population) and EUR 11,993 (in the S. PAU population). CONCLUSION: According to the economic model, Thrombo inCode(®) is the dominant option in assessing the risk of VTE, compared with the standard method currently used.
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N107dcd3b88354151b743e8863edbf456
32 N108498bcb3a64b66b51380afc358c9dc
33 sg:journal.1031175
34 schema:keywords Carlo probabilistic analyses
35 Clinical–Genetic Function
36 EUR
37 EUR 180
38 Monte Carlo probabilistic analysis
39 National Health System
40 National Health System perspective
41 Spain
42 Spanish National Health System
43 Spanish sources
44 Thrombo inCode
45 VTE events
46 analysis
47 assessment
48 basis
49 better coverage
50 bleeding
51 capacity
52 case-control study
53 cases
54 coagulation pathway
55 cost
56 cost-effectiveness ratio
57 coverage
58 date
59 decision tree
60 different populations
61 dominance
62 dominant option
63 economic analysis
64 economic model
65 events
66 expectancy
67 function
68 genetic predisposition
69 genetic tests
70 genetic tools
71 genetic variants
72 good sensitivity
73 health state utilities
74 health system
75 health system perspective
76 identification
77 identification of thrombophilia
78 inCode
79 incremental cost-effectiveness ratio
80 life expectancy
81 literature
82 low sensitivity
83 method
84 model
85 new genetic tools
86 number
87 options
88 pathway
89 patients
90 perspective
91 population
92 predictive capacity
93 predisposition
94 preventive treatment
95 prices
96 probabilistic analysis
97 ratio
98 reduction
99 risk
100 risk assessment
101 risk of VTE
102 sensitivity
103 severe bleeding
104 simulations
105 source
106 standard methods
107 state utilities
108 study
109 subjects
110 system
111 systems perspective
112 test
113 thanks
114 threshold price
115 thromboembolism
116 thrombophilia
117 tool
118 treatment
119 trees
120 underlying genetic predisposition
121 use
122 utility
123 variants
124 venous thromboembolism
125 warfarin
126 years
127 schema:name Economic Analysis of Thrombo inCode, a Clinical–Genetic Function for Assessing the Risk of Venous Thromboembolism
128 schema:pagination 233-242
129 schema:productId N7bdc9d58d7c74dc79d5a11508015749c
130 N83aefb8a9a82467f936e622bcfcab40f
131 Nb794b550fab94544b974398592a8c3c3
132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018336592
133 https://doi.org/10.1007/s40258-015-0153-x
134 schema:sdDatePublished 2022-01-01T18:38
135 schema:sdLicense https://scigraph.springernature.com/explorer/license/
136 schema:sdPublisher N3db96d2697204caaa18b49c0f9610fa3
137 schema:url https://doi.org/10.1007/s40258-015-0153-x
138 sgo:license sg:explorer/license/
139 sgo:sdDataset articles
140 rdf:type schema:ScholarlyArticle
141 N04c755eb2d704ec88c3aea3b3b7c2b19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Risk Assessment
143 rdf:type schema:DefinedTerm
144 N107dcd3b88354151b743e8863edbf456 schema:volumeNumber 13
145 rdf:type schema:PublicationVolume
146 N108498bcb3a64b66b51380afc358c9dc schema:issueNumber 2
147 rdf:type schema:PublicationIssue
148 N11eadad467594430a14e811d2034e752 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Cost-Benefit Analysis
150 rdf:type schema:DefinedTerm
151 N13290a159dea4c4ca2abaee4240c5abf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Decision Trees
153 rdf:type schema:DefinedTerm
154 N20350c2f4c1a4fbb90a0563ec0649161 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Models, Economic
156 rdf:type schema:DefinedTerm
157 N22fe9cc33f2f4911858e525285501f85 rdf:first sg:person.010517165004.28
158 rdf:rest N928fa9364e97456aafc209ad0b25e96b
159 N253c766c898640728f56f3cc60cda751 rdf:first sg:person.0612004016.93
160 rdf:rest N983353d7e0054e33bc4b4c85c5fdcb94
161 N2b82ca8f06914442beaaa081f60c789e rdf:first sg:person.01153046316.88
162 rdf:rest N56d97d8ba42446e49dd9d7185e2c3e32
163 N3afbba81432045ffaee315d89078f690 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Male
165 rdf:type schema:DefinedTerm
166 N3db96d2697204caaa18b49c0f9610fa3 schema:name Springer Nature - SN SciGraph project
167 rdf:type schema:Organization
168 N415cc5f6f0564030b37761fa4d471c04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Aged, 80 and over
170 rdf:type schema:DefinedTerm
171 N43ce7f25f7724fbdbdf4fdd4a7654d0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Spain
173 rdf:type schema:DefinedTerm
174 N56d97d8ba42446e49dd9d7185e2c3e32 rdf:first sg:person.01361262234.90
175 rdf:rest N7b940ab297174af1826af665caca83a6
176 N7b940ab297174af1826af665caca83a6 rdf:first sg:person.01252743730.94
177 rdf:rest N96971268cd3d4ec0bb7d0219d1070067
178 N7bdc9d58d7c74dc79d5a11508015749c schema:name pubmed_id
179 schema:value 25652150
180 rdf:type schema:PropertyValue
181 N7e572908f7cc49bebd41a819332caafe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Predictive Value of Tests
183 rdf:type schema:DefinedTerm
184 N83aefb8a9a82467f936e622bcfcab40f schema:name dimensions_id
185 schema:value pub.1018336592
186 rdf:type schema:PropertyValue
187 N84b02cb9995a4d81af9e0ba5b0226dfb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Humans
189 rdf:type schema:DefinedTerm
190 N87d9ad07ef8e46b39dcf9f4dcac30b2e rdf:first sg:person.012315061302.94
191 rdf:rest Nd905042d59bb4c6aa807a90e58edd2db
192 N89da5873664c46c5927d16cc9b76eed7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Genetic Predisposition to Disease
194 rdf:type schema:DefinedTerm
195 N928fa9364e97456aafc209ad0b25e96b rdf:first sg:person.0717600224.76
196 rdf:rest Nea11d90abddc45828d1c09c2fbe6cdf2
197 N96971268cd3d4ec0bb7d0219d1070067 rdf:first sg:person.0734710053.11
198 rdf:rest N253c766c898640728f56f3cc60cda751
199 N983353d7e0054e33bc4b4c85c5fdcb94 rdf:first sg:person.01003001726.51
200 rdf:rest rdf:nil
201 Na76100c715da4106a65d79ade44cee23 rdf:first sg:person.01264274321.77
202 rdf:rest N87d9ad07ef8e46b39dcf9f4dcac30b2e
203 Na7e496f63dc7404a8c3dfff732a2d453 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Aged
205 rdf:type schema:DefinedTerm
206 Nb638b608bfdd4ab48e71952d17f57cdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Genetic Testing
208 rdf:type schema:DefinedTerm
209 Nb794b550fab94544b974398592a8c3c3 schema:name doi
210 schema:value 10.1007/s40258-015-0153-x
211 rdf:type schema:PropertyValue
212 Nc4491126b5db4443afb34f19c1cafed4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name Middle Aged
214 rdf:type schema:DefinedTerm
215 Nccbbe6329d524d168d32918509db47c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
216 schema:name Adult
217 rdf:type schema:DefinedTerm
218 Nd45175a56ca74c77969d0087b95d806e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
219 schema:name Sensitivity and Specificity
220 rdf:type schema:DefinedTerm
221 Nd905042d59bb4c6aa807a90e58edd2db rdf:first sg:person.0701215506.94
222 rdf:rest N22fe9cc33f2f4911858e525285501f85
223 Ne3e4103761c240e8aff3e7981ad6ded8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
224 schema:name Venous Thromboembolism
225 rdf:type schema:DefinedTerm
226 Nea11d90abddc45828d1c09c2fbe6cdf2 rdf:first sg:person.01046612235.61
227 rdf:rest N2b82ca8f06914442beaaa081f60c789e
228 Neffd42c751a0487d8faf4787a21eb524 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
229 schema:name Female
230 rdf:type schema:DefinedTerm
231 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
232 schema:name Economics
233 rdf:type schema:DefinedTerm
234 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
235 schema:name Applied Economics
236 rdf:type schema:DefinedTerm
237 sg:journal.1031175 schema:issn 1175-5652
238 1179-1896
239 schema:name Applied Health Economics and Health Policy
240 schema:publisher Springer Nature
241 rdf:type schema:Periodical
242 sg:person.01003001726.51 schema:affiliation grid-institutes:None
243 schema:familyName Salas
244 schema:givenName E.
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003001726.51
246 rdf:type schema:Person
247 sg:person.01046612235.61 schema:affiliation grid-institutes:None
248 schema:familyName Mateo
249 schema:givenName J.
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046612235.61
251 rdf:type schema:Person
252 sg:person.010517165004.28 schema:affiliation grid-institutes:None
253 schema:familyName Souto
254 schema:givenName J. C.
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010517165004.28
256 rdf:type schema:Person
257 sg:person.01153046316.88 schema:affiliation grid-institutes:grid.462844.8
258 schema:familyName Saut
259 schema:givenName N.
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153046316.88
261 rdf:type schema:Person
262 sg:person.012315061302.94 schema:affiliation grid-institutes:None
263 schema:familyName Soria
264 schema:givenName J. M.
265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012315061302.94
266 rdf:type schema:Person
267 sg:person.01252743730.94 schema:affiliation grid-institutes:None
268 schema:familyName Sala
269 schema:givenName J.
270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252743730.94
271 rdf:type schema:Person
272 sg:person.01264274321.77 schema:affiliation grid-institutes:None
273 schema:familyName Rubio-Terrés
274 schema:givenName C.
275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264274321.77
276 rdf:type schema:Person
277 sg:person.01361262234.90 schema:affiliation grid-institutes:None
278 schema:familyName Rubio-Rodríguez
279 schema:givenName D.
280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361262234.90
281 rdf:type schema:Person
282 sg:person.0612004016.93 schema:affiliation grid-institutes:None
283 schema:familyName Pich
284 schema:givenName S.
285 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612004016.93
286 rdf:type schema:Person
287 sg:person.0701215506.94 schema:affiliation grid-institutes:grid.5399.6
288 schema:familyName Morange
289 schema:givenName P. E.
290 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701215506.94
291 rdf:type schema:Person
292 sg:person.0717600224.76 schema:affiliation grid-institutes:grid.462844.8
293 schema:familyName Suchon
294 schema:givenName P.
295 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717600224.76
296 rdf:type schema:Person
297 sg:person.0734710053.11 schema:affiliation grid-institutes:None
298 schema:familyName Gracia
299 schema:givenName A.
300 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734710053.11
301 rdf:type schema:Person
302 sg:pub.10.1007/bf03320860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002980633
303 https://doi.org/10.1007/bf03320860
304 rdf:type schema:CreativeWork
305 sg:pub.10.1007/s10198-003-0182-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047715908
306 https://doi.org/10.1007/s10198-003-0182-5
307 rdf:type schema:CreativeWork
308 sg:pub.10.1186/1477-7525-1-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036510545
309 https://doi.org/10.1186/1477-7525-1-4
310 rdf:type schema:CreativeWork
311 sg:pub.10.1186/1477-7525-1-54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023782676
312 https://doi.org/10.1186/1477-7525-1-54
313 rdf:type schema:CreativeWork
314 grid-institutes:None schema:alternateName Health Value, C/-Virgen de Aránzazu, 21, 5°B, 28034 Madrid, Spain
315 Scientific Department, Ferrer inCode, Barcelona, Spain
316 Scientific Department, Gendiag.exe, Barcelona, Spain
317 Unitat de Genòmica de Malalties Complexes, IIB-Sant Pau, Barcelona, Spain
318 Unitat d’Hemostasia i Trombosis IIB-Sant Pau, Barcelona, Spain
319 schema:name Health Value, C/-Virgen de Aránzazu, 21, 5°B, 28034 Madrid, Spain
320 Scientific Department, Ferrer inCode, Barcelona, Spain
321 Scientific Department, Gendiag.exe, Barcelona, Spain
322 Unitat de Genòmica de Malalties Complexes, IIB-Sant Pau, Barcelona, Spain
323 Unitat d’Hemostasia i Trombosis IIB-Sant Pau, Barcelona, Spain
324 rdf:type schema:Organization
325 grid-institutes:grid.462844.8 schema:alternateName ICAN Institute for Cardiometabolism and Nutrition, Université Pierre et Marie Curie Paris 6, Paris, France
326 schema:name ICAN Institute for Cardiometabolism and Nutrition, Université Pierre et Marie Curie Paris 6, Paris, France
327 Inserm Unité Mixte de Recherche en Santé (UMR_S) 937, Paris, France
328 rdf:type schema:Organization
329 grid-institutes:grid.5399.6 schema:alternateName Aix-Marseille Université, Marseille, France
330 schema:name Aix-Marseille Université, Marseille, France
331 Inserm UMR_S 1062, 13385 Marseille, France
332 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...