Cold atmospheric plasma as a promising approach for gelatin immobilization on poly(ε-caprolactone) electrospun scaffolds View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-27

AUTHORS

Marziyeh Meghdadi, Seyed-Mohammad Atyabi, Mohamad Pezeshki-Modaress, Shiva Irani, Zahra Noormohammadi, Mojgan Zandi

ABSTRACT

Poly(Ɛ-caprolactone) (PCL) is a biocompatible polymer with a high potential to be used in tissue engineering especially in tight tissues. In the current study, cold atmospheric plasma (CAP) is used as a promising method for immobilization of gelatin as a functional biomacromolecule on PCL nanofibrous substrates. The CAP surface modification leads to oxidation of chemical groups existing on the PCL surface without doing any damage to the bulk properties of biomaterials for gelatin biomacromolecule grafting. The water contact angle (WCA) of the CAP-treated surface and gelatin-grafted PCL using CAP indicates an effective increment in the hydrophilicity of the PCL surface. Also to achieve the highest levels of gelatin grafting on the PCL surface, two different grafting methods and gelatin concentration diversity are utilized in the grafting process. The immobilization of gelatin biomacromolecules onto the CAP surface-modified PCL nanofibers is investigated using scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The gelatin-modified PCL substrates revealed uniform nanofibrous morphology with increased average fiber diameter. The results of FTIR spectra, including hydroxyl groups, NH groups, and amide II of gelatin-grafting peaks, confirm the gelatin immobilization on the surface of nanofibers. The metabolic activity of cultured mesenchymal stem cells (MSCs) on the surface-modified scaffolds is evaluated using MTT analysis (P ≤ 0.05). The results of metabolic activity and also SEM and DAPI staining observations indicate proper attachment on the surface and viability for MSCs on the surface-immobilized nanofibrous scaffolds. Therefore, CAP treatment would be an effective method for biomacromolecule immobilization on nanofibers towards the enhancement of cell behavior. More... »

PAGES

1-11

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40204-019-0111-z

DOI

http://dx.doi.org/10.1007/s40204-019-0111-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113041734

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30919328


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Islamic Azad University, Science and Research Branch", 
          "id": "https://www.grid.ac/institutes/grid.472472.0", 
          "name": [
            "Department of Biology, School of Basic Sciences, Sciences and Research Branch, Islamic Azad University, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meghdadi", 
        "givenName": "Marziyeh", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pasteur Institute of Iran", 
          "id": "https://www.grid.ac/institutes/grid.420169.8", 
          "name": [
            "Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Atyabi", 
        "givenName": "Seyed-Mohammad", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Iran University of Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.411746.1", 
          "name": [
            "Burn Research Center, Iran University of Medical Sciences, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pezeshki-Modaress", 
        "givenName": "Mohamad", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Islamic Azad University, Science and Research Branch", 
          "id": "https://www.grid.ac/institutes/grid.472472.0", 
          "name": [
            "Department of Biology, School of Basic Sciences, Sciences and Research Branch, Islamic Azad University, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Irani", 
        "givenName": "Shiva", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Islamic Azad University, Science and Research Branch", 
          "id": "https://www.grid.ac/institutes/grid.472472.0", 
          "name": [
            "Department of Biology, School of Basic Sciences, Sciences and Research Branch, Islamic Azad University, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Noormohammadi", 
        "givenName": "Zahra", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Iran Polymer and Petrochemical Institute", 
          "id": "https://www.grid.ac/institutes/grid.419412.b", 
          "name": [
            "Department of Biomaterial, Iran Polymer and Petrochemical Institute, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zandi", 
        "givenName": "Mojgan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2006.02.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000212960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12013-015-0718-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003646820", 
          "https://doi.org/10.1007/s12013-015-0718-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0jm04502k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003767136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-9612(02)00128-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010466419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbm.a.31709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013286120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.progpolymsci.2010.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015668692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2004.07.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016473844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2014.10.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018401100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2016.05.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019599858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actbio.2007.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021670597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msec.2014.12.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026603479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12221-008-0106-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027477239", 
          "https://doi.org/10.1007/s12221-008-0106-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/ajac.2014.59062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030130723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msec.2006.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032290072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tsf.2010.07.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033435479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lfs.2016.02.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033868869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/146953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036449344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nimb.2008.03.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039825306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13758-012-0030-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041079703", 
          "https://doi.org/10.1007/s13758-012-0030-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.200801648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042091193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.200801648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042091193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2004.04.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044047298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbm.a.35890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046255550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ppap.201300104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047178050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sia.2619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048347349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pi.4843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049520011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2007.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051131238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.colsurfb.2007.06.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053240080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/156856209x444475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053282007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/am201795g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055142179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp902137y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056114342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp902137y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056114342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/ten.2005.11.1149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059313314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/ten.2006.12.1197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059313705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tps.2015.2403307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061769524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.9734/arrb/2014/7419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074128492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7ra13237a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101500923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijbiomac.2018.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103163876"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-27", 
    "datePublishedReg": "2019-03-27", 
    "description": "Poly(\u0190-caprolactone) (PCL) is a biocompatible polymer with a high potential to be used in tissue engineering especially in tight tissues. In the current study, cold atmospheric plasma (CAP) is used as a promising method for immobilization of gelatin as a functional biomacromolecule on PCL nanofibrous substrates. The CAP surface modification leads to oxidation of chemical groups existing on the PCL surface without doing any damage to the bulk properties of biomaterials for gelatin biomacromolecule grafting. The water contact angle (WCA) of the CAP-treated surface and gelatin-grafted PCL using CAP indicates an effective increment in the hydrophilicity of the PCL surface. Also to achieve the highest levels of gelatin grafting on the PCL surface, two different grafting methods and gelatin concentration diversity are utilized in the grafting process. The immobilization of gelatin biomacromolecules onto the CAP surface-modified PCL nanofibers is investigated using scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The gelatin-modified PCL substrates revealed uniform nanofibrous morphology with increased average fiber diameter. The results of FTIR spectra, including hydroxyl groups, NH groups, and amide II of gelatin-grafting peaks, confirm the gelatin immobilization on the surface of nanofibers. The metabolic activity of cultured mesenchymal stem cells (MSCs) on the surface-modified scaffolds is evaluated using MTT analysis (P\u2009\u2264\u20090.05). The results of metabolic activity and also SEM and DAPI staining observations indicate proper attachment on the surface and viability for MSCs on the surface-immobilized nanofibrous scaffolds. Therefore, CAP treatment would be an effective method for biomacromolecule immobilization on nanofibers towards the enhancement of cell behavior.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40204-019-0111-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1051785", 
        "issn": [
          "2194-0509", 
          "2194-0517"
        ], 
        "name": "Progress in Biomaterials", 
        "type": "Periodical"
      }
    ], 
    "name": "Cold atmospheric plasma as a promising approach for gelatin immobilization on poly(\u03b5-caprolactone) electrospun scaffolds", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "197796b4ea6eac2796993d0e8a529d38d3483bbdd9003e8bef7de215b799d757"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30919328"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101656983"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40204-019-0111-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113041734"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40204-019-0111-z", 
      "https://app.dimensions.ai/details/publication/pub.1113041734"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130830_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40204-019-0111-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40204-019-0111-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40204-019-0111-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40204-019-0111-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40204-019-0111-z'


 

This table displays all metadata directly associated to this object as RDF triples.

212 TRIPLES      21 PREDICATES      62 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40204-019-0111-z schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Ne753aee06bad43fb9830370e0ff08aaa
4 schema:citation sg:pub.10.1007/s12013-015-0718-1
5 sg:pub.10.1007/s12221-008-0106-1
6 sg:pub.10.1007/s13758-012-0030-1
7 https://doi.org/10.1002/jbm.a.31709
8 https://doi.org/10.1002/jbm.a.35890
9 https://doi.org/10.1002/pi.4843
10 https://doi.org/10.1002/ppap.201300104
11 https://doi.org/10.1002/sia.2619
12 https://doi.org/10.1002/smll.200801648
13 https://doi.org/10.1016/j.actbio.2007.01.002
14 https://doi.org/10.1016/j.apsusc.2016.05.123
15 https://doi.org/10.1016/j.biomaterials.2004.04.031
16 https://doi.org/10.1016/j.biomaterials.2004.07.048
17 https://doi.org/10.1016/j.biomaterials.2006.02.024
18 https://doi.org/10.1016/j.biomaterials.2007.03.009
19 https://doi.org/10.1016/j.colsurfb.2007.06.019
20 https://doi.org/10.1016/j.ijbiomac.2018.04.002
21 https://doi.org/10.1016/j.lfs.2016.02.040
22 https://doi.org/10.1016/j.matlet.2014.10.100
23 https://doi.org/10.1016/j.msec.2006.05.019
24 https://doi.org/10.1016/j.msec.2014.12.023
25 https://doi.org/10.1016/j.nimb.2008.03.167
26 https://doi.org/10.1016/j.progpolymsci.2010.03.003
27 https://doi.org/10.1016/j.tsf.2010.07.044
28 https://doi.org/10.1016/s0142-9612(02)00128-x
29 https://doi.org/10.1021/am201795g
30 https://doi.org/10.1021/jp902137y
31 https://doi.org/10.1039/c0jm04502k
32 https://doi.org/10.1039/c7ra13237a
33 https://doi.org/10.1089/ten.2005.11.1149
34 https://doi.org/10.1089/ten.2006.12.1197
35 https://doi.org/10.1109/tps.2015.2403307
36 https://doi.org/10.1155/2013/146953
37 https://doi.org/10.1163/156856209x444475
38 https://doi.org/10.4236/ajac.2014.59062
39 https://doi.org/10.9734/arrb/2014/7419
40 schema:datePublished 2019-03-27
41 schema:datePublishedReg 2019-03-27
42 schema:description Poly(Ɛ-caprolactone) (PCL) is a biocompatible polymer with a high potential to be used in tissue engineering especially in tight tissues. In the current study, cold atmospheric plasma (CAP) is used as a promising method for immobilization of gelatin as a functional biomacromolecule on PCL nanofibrous substrates. The CAP surface modification leads to oxidation of chemical groups existing on the PCL surface without doing any damage to the bulk properties of biomaterials for gelatin biomacromolecule grafting. The water contact angle (WCA) of the CAP-treated surface and gelatin-grafted PCL using CAP indicates an effective increment in the hydrophilicity of the PCL surface. Also to achieve the highest levels of gelatin grafting on the PCL surface, two different grafting methods and gelatin concentration diversity are utilized in the grafting process. The immobilization of gelatin biomacromolecules onto the CAP surface-modified PCL nanofibers is investigated using scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The gelatin-modified PCL substrates revealed uniform nanofibrous morphology with increased average fiber diameter. The results of FTIR spectra, including hydroxyl groups, NH groups, and amide II of gelatin-grafting peaks, confirm the gelatin immobilization on the surface of nanofibers. The metabolic activity of cultured mesenchymal stem cells (MSCs) on the surface-modified scaffolds is evaluated using MTT analysis (P ≤ 0.05). The results of metabolic activity and also SEM and DAPI staining observations indicate proper attachment on the surface and viability for MSCs on the surface-immobilized nanofibrous scaffolds. Therefore, CAP treatment would be an effective method for biomacromolecule immobilization on nanofibers towards the enhancement of cell behavior.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf sg:journal.1051785
47 schema:name Cold atmospheric plasma as a promising approach for gelatin immobilization on poly(ε-caprolactone) electrospun scaffolds
48 schema:pagination 1-11
49 schema:productId N184e943dcac641659330b4282b9cc4fa
50 N1ac3e2b485134336b2ef4ea630728278
51 N3ee1472c72594fb5b2dd021e5e503e2f
52 N7ddefcfbe31446bcb7af39726938d93b
53 N9dbd31af4f9c4c229843df1b994cb04d
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113041734
55 https://doi.org/10.1007/s40204-019-0111-z
56 schema:sdDatePublished 2019-04-11T14:02
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N35c2ca6df889498d86fc9e16fd1c36da
59 schema:url https://link.springer.com/10.1007%2Fs40204-019-0111-z
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N184e943dcac641659330b4282b9cc4fa schema:name readcube_id
64 schema:value 197796b4ea6eac2796993d0e8a529d38d3483bbdd9003e8bef7de215b799d757
65 rdf:type schema:PropertyValue
66 N1ac3e2b485134336b2ef4ea630728278 schema:name pubmed_id
67 schema:value 30919328
68 rdf:type schema:PropertyValue
69 N2f3ce82c693f40f1ba55273d0d4c0256 schema:affiliation https://www.grid.ac/institutes/grid.472472.0
70 schema:familyName Noormohammadi
71 schema:givenName Zahra
72 rdf:type schema:Person
73 N35c2ca6df889498d86fc9e16fd1c36da schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N3ee1472c72594fb5b2dd021e5e503e2f schema:name doi
76 schema:value 10.1007/s40204-019-0111-z
77 rdf:type schema:PropertyValue
78 N4310cd9cdbd8429b9d3ca9fdd7980e30 schema:affiliation https://www.grid.ac/institutes/grid.419412.b
79 schema:familyName Zandi
80 schema:givenName Mojgan
81 rdf:type schema:Person
82 N5db976548fc24c9b9a5306ead3643bd1 rdf:first N5f14335d42254810b20b3f23c115f6e7
83 rdf:rest Nde648891d8504d56a5cc2745c5dcafc3
84 N5f14335d42254810b20b3f23c115f6e7 schema:affiliation https://www.grid.ac/institutes/grid.472472.0
85 schema:familyName Irani
86 schema:givenName Shiva
87 rdf:type schema:Person
88 N7d92690c71164580a2122d015b734c6b rdf:first N9d4d7dbb2d604111b7921f866a61a903
89 rdf:rest Nc8d066d335634adeb5dee038a80d42a4
90 N7ddefcfbe31446bcb7af39726938d93b schema:name dimensions_id
91 schema:value pub.1113041734
92 rdf:type schema:PropertyValue
93 N932596fdae254eec86200e7421e6714c rdf:first N4310cd9cdbd8429b9d3ca9fdd7980e30
94 rdf:rest rdf:nil
95 N9d4d7dbb2d604111b7921f866a61a903 schema:affiliation https://www.grid.ac/institutes/grid.420169.8
96 schema:familyName Atyabi
97 schema:givenName Seyed-Mohammad
98 rdf:type schema:Person
99 N9dbd31af4f9c4c229843df1b994cb04d schema:name nlm_unique_id
100 schema:value 101656983
101 rdf:type schema:PropertyValue
102 Na8054a1fb5b24248ba88881d7b7ae4f8 schema:affiliation https://www.grid.ac/institutes/grid.472472.0
103 schema:familyName Meghdadi
104 schema:givenName Marziyeh
105 rdf:type schema:Person
106 Nc8d066d335634adeb5dee038a80d42a4 rdf:first Neb02ad0120c4401a9176656cb65ec041
107 rdf:rest N5db976548fc24c9b9a5306ead3643bd1
108 Nde648891d8504d56a5cc2745c5dcafc3 rdf:first N2f3ce82c693f40f1ba55273d0d4c0256
109 rdf:rest N932596fdae254eec86200e7421e6714c
110 Ne753aee06bad43fb9830370e0ff08aaa rdf:first Na8054a1fb5b24248ba88881d7b7ae4f8
111 rdf:rest N7d92690c71164580a2122d015b734c6b
112 Neb02ad0120c4401a9176656cb65ec041 schema:affiliation https://www.grid.ac/institutes/grid.411746.1
113 schema:familyName Pezeshki-Modaress
114 schema:givenName Mohamad
115 rdf:type schema:Person
116 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
117 schema:name Chemical Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
120 schema:name Physical Chemistry (incl. Structural)
121 rdf:type schema:DefinedTerm
122 sg:journal.1051785 schema:issn 2194-0509
123 2194-0517
124 schema:name Progress in Biomaterials
125 rdf:type schema:Periodical
126 sg:pub.10.1007/s12013-015-0718-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003646820
127 https://doi.org/10.1007/s12013-015-0718-1
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s12221-008-0106-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027477239
130 https://doi.org/10.1007/s12221-008-0106-1
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s13758-012-0030-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041079703
133 https://doi.org/10.1007/s13758-012-0030-1
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/jbm.a.31709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013286120
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/jbm.a.35890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046255550
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/pi.4843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049520011
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1002/ppap.201300104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047178050
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/sia.2619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048347349
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/smll.200801648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042091193
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.actbio.2007.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021670597
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.apsusc.2016.05.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019599858
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.biomaterials.2004.04.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044047298
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.biomaterials.2004.07.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016473844
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.biomaterials.2006.02.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000212960
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.biomaterials.2007.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051131238
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.colsurfb.2007.06.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053240080
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.ijbiomac.2018.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103163876
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.lfs.2016.02.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033868869
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.matlet.2014.10.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018401100
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.msec.2006.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032290072
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.msec.2014.12.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026603479
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.nimb.2008.03.167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039825306
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.progpolymsci.2010.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015668692
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.tsf.2010.07.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033435479
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0142-9612(02)00128-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010466419
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1021/am201795g schema:sameAs https://app.dimensions.ai/details/publication/pub.1055142179
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1021/jp902137y schema:sameAs https://app.dimensions.ai/details/publication/pub.1056114342
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1039/c0jm04502k schema:sameAs https://app.dimensions.ai/details/publication/pub.1003767136
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1039/c7ra13237a schema:sameAs https://app.dimensions.ai/details/publication/pub.1101500923
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1089/ten.2005.11.1149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059313314
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1089/ten.2006.12.1197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059313705
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/tps.2015.2403307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061769524
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1155/2013/146953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036449344
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1163/156856209x444475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053282007
196 rdf:type schema:CreativeWork
197 https://doi.org/10.4236/ajac.2014.59062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030130723
198 rdf:type schema:CreativeWork
199 https://doi.org/10.9734/arrb/2014/7419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074128492
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.411746.1 schema:alternateName Iran University of Medical Sciences
202 schema:name Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
203 rdf:type schema:Organization
204 https://www.grid.ac/institutes/grid.419412.b schema:alternateName Iran Polymer and Petrochemical Institute
205 schema:name Department of Biomaterial, Iran Polymer and Petrochemical Institute, Tehran, Iran
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.420169.8 schema:alternateName Pasteur Institute of Iran
208 schema:name Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.472472.0 schema:alternateName Islamic Azad University, Science and Research Branch
211 schema:name Department of Biology, School of Basic Sciences, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
212 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...