Flux enhancement of thin-film composite membrane by graphene oxide incorporation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-12

AUTHORS

Sajjad Jalali, Abdollah Rashidi Mehrabadi, Jalal Shayegan, Maryam Mirabi, Sayed Siavash Madaeni

ABSTRACT

Reverse Osmosis (RO) is a rapid-developing desalination technology; however, it suffers from inefficient energy consumption. To reduce energy consumption, in this study, reverse osmosis thin-film composite membrane (TFC) module was prepared and composed of m-phenylenediamine (MPD), graphene oxide, and 1,3,5-benzenetricarbonyl chloride (TMC) by interfacial polymerization on the surface of a polysulfone substrate. The graphene oxide was embedded in the mentioned thin-film composite by adding it to MPD aqueous solution to enhance permeation flux and, thus, reduce energy consumption. This study assessed the performance of the membrane using a lab-scale RO setup and evaluated permeability and salt rejection. The chemical properties of TFC were also analyzed using ATR-FTIR. Incorporating various concentrations (0, 20, 40, 60, and 80 ppm) of graphene oxide into the TFC was shown to improve water flux. Flux improvement of 50% was achieved by using graphene (80 ppm), while 10% of salt rejection was lost. These flux increases resulted from the changes in surface charge, surface roughness, and hydrophilicity due to the embedment of GO nanosheets. The simplicity of the method, compatibility of GO with polyamide membrane, and quite short-time reaction are the highlights of this technique for developing novel TFC membranes for water treatment. More... »

PAGES

1-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40201-019-00355-0

DOI

http://dx.doi.org/10.1007/s40201-019-00355-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112685526


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shahid Beheshti University of Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.411600.2", 
          "name": [
            "Department of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jalali", 
        "givenName": "Sajjad", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shahid Beheshti University of Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.411600.2", 
          "name": [
            "Department of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mehrabadi", 
        "givenName": "Abdollah Rashidi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sharif University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412553.4", 
          "name": [
            "Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shayegan", 
        "givenName": "Jalal", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shahid Beheshti University of Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.411600.2", 
          "name": [
            "Department of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mirabi", 
        "givenName": "Maryam", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Razi University", 
          "id": "https://www.grid.ac/institutes/grid.412668.f", 
          "name": [
            "Department of Chemical Engineering, Razi University, Kermanshah, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Madaeni", 
        "givenName": "Sayed Siavash", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/c6nr03503e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018460575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2014.03.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021494460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40201-015-0217-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027026806", 
          "https://doi.org/10.1186/s40201-015-0217-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.seppur.2012.01.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028211119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ta04471e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031077544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2008.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032119402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2007.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036770799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2016.11.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041357938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0266-3538(03)00067-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042268355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0266-3538(03)00067-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042268355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2007.02.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045288509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s0003701x10040080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048049865", 
          "https://doi.org/10.3103/s0003701x10040080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2017.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054000163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.langmuir.6b01012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055117273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2017.06.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086060073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2017.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090314311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2017.06.087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090383077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2017.06.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090384574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2017.07.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090738204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2017.08.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091495295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2017.09.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091507794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2017.09.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091507794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2017.09.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091507794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2017.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091877545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2018.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100811956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2018.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100946722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2018.04.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103598759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.oceaneng.2018.05.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104396809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2018.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105431746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jiec.2018.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105699932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2018.08.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106382761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-813926-4.00009-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110125337"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-12", 
    "datePublishedReg": "2019-03-12", 
    "description": "Reverse Osmosis (RO) is a rapid-developing desalination technology; however, it suffers from inefficient energy consumption. To reduce energy consumption, in this study, reverse osmosis thin-film composite membrane (TFC) module was prepared and composed of m-phenylenediamine (MPD), graphene oxide, and 1,3,5-benzenetricarbonyl chloride (TMC) by interfacial polymerization on the surface of a polysulfone substrate. The graphene oxide was embedded in the mentioned thin-film composite by adding it to MPD aqueous solution to enhance permeation flux and, thus, reduce energy consumption. This study assessed the performance of the membrane using a lab-scale RO setup and evaluated permeability and salt rejection. The chemical properties of TFC were also analyzed using ATR-FTIR. Incorporating various concentrations (0, 20, 40, 60, and 80 ppm) of graphene oxide into the TFC was shown to improve water flux. Flux improvement of 50% was achieved by using graphene (80 ppm), while 10% of salt rejection was lost. These flux increases resulted from the changes in surface charge, surface roughness, and hydrophilicity due to the embedment of GO nanosheets. The simplicity of the method, compatibility of GO with polyamide membrane, and quite short-time reaction are the highlights of this technique for developing novel TFC membranes for water treatment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40201-019-00355-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297408", 
        "issn": [
          "1735-1979", 
          "1735-2746"
        ], 
        "name": "Journal of Environmental Health Science and Engineering", 
        "type": "Periodical"
      }
    ], 
    "name": "Flux enhancement of thin-film composite membrane by graphene oxide incorporation", 
    "pagination": "1-6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0ac78fb2098d5b62b6015d240fbdb787f0965e558d89bf40d933850ab96c6d59"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40201-019-00355-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112685526"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40201-019-00355-0", 
      "https://app.dimensions.ai/details/publication/pub.1112685526"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000357_0000000357/records_99328_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40201-019-00355-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40201-019-00355-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40201-019-00355-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40201-019-00355-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40201-019-00355-0'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      53 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40201-019-00355-0 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author Nc9f040f3cd204359b11279a06992d38e
4 schema:citation sg:pub.10.1186/s40201-015-0217-8
5 sg:pub.10.3103/s0003701x10040080
6 https://doi.org/10.1016/b978-0-12-813926-4.00009-4
7 https://doi.org/10.1016/j.desal.2007.06.003
8 https://doi.org/10.1016/j.desal.2008.04.003
9 https://doi.org/10.1016/j.desal.2014.03.031
10 https://doi.org/10.1016/j.desal.2017.06.020
11 https://doi.org/10.1016/j.desal.2017.08.023
12 https://doi.org/10.1016/j.desal.2017.09.012
13 https://doi.org/10.1016/j.desal.2018.01.014
14 https://doi.org/10.1016/j.desal.2018.07.005
15 https://doi.org/10.1016/j.jiec.2018.07.010
16 https://doi.org/10.1016/j.memsci.2007.02.025
17 https://doi.org/10.1016/j.memsci.2016.11.041
18 https://doi.org/10.1016/j.memsci.2017.01.013
19 https://doi.org/10.1016/j.memsci.2017.06.034
20 https://doi.org/10.1016/j.memsci.2017.06.084
21 https://doi.org/10.1016/j.memsci.2017.06.087
22 https://doi.org/10.1016/j.memsci.2017.07.034
23 https://doi.org/10.1016/j.memsci.2017.09.023
24 https://doi.org/10.1016/j.memsci.2018.02.010
25 https://doi.org/10.1016/j.memsci.2018.04.034
26 https://doi.org/10.1016/j.memsci.2018.08.047
27 https://doi.org/10.1016/j.oceaneng.2018.05.042
28 https://doi.org/10.1016/j.seppur.2012.01.039
29 https://doi.org/10.1016/s0266-3538(03)00067-8
30 https://doi.org/10.1021/acs.langmuir.6b01012
31 https://doi.org/10.1039/c5ta04471e
32 https://doi.org/10.1039/c6nr03503e
33 schema:datePublished 2019-03-12
34 schema:datePublishedReg 2019-03-12
35 schema:description Reverse Osmosis (RO) is a rapid-developing desalination technology; however, it suffers from inefficient energy consumption. To reduce energy consumption, in this study, reverse osmosis thin-film composite membrane (TFC) module was prepared and composed of m-phenylenediamine (MPD), graphene oxide, and 1,3,5-benzenetricarbonyl chloride (TMC) by interfacial polymerization on the surface of a polysulfone substrate. The graphene oxide was embedded in the mentioned thin-film composite by adding it to MPD aqueous solution to enhance permeation flux and, thus, reduce energy consumption. This study assessed the performance of the membrane using a lab-scale RO setup and evaluated permeability and salt rejection. The chemical properties of TFC were also analyzed using ATR-FTIR. Incorporating various concentrations (0, 20, 40, 60, and 80 ppm) of graphene oxide into the TFC was shown to improve water flux. Flux improvement of 50% was achieved by using graphene (80 ppm), while 10% of salt rejection was lost. These flux increases resulted from the changes in surface charge, surface roughness, and hydrophilicity due to the embedment of GO nanosheets. The simplicity of the method, compatibility of GO with polyamide membrane, and quite short-time reaction are the highlights of this technique for developing novel TFC membranes for water treatment.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf sg:journal.1297408
40 schema:name Flux enhancement of thin-film composite membrane by graphene oxide incorporation
41 schema:pagination 1-6
42 schema:productId Nbeea987ad02748898c7664760bbdc0d3
43 Nd4f1a3b79abd47909a619a5193b3a67d
44 Ndc4f894fd0ae450d83573d766f319dd8
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112685526
46 https://doi.org/10.1007/s40201-019-00355-0
47 schema:sdDatePublished 2019-04-11T11:32
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N59b25cee220047ae8d6016288052c430
50 schema:url https://link.springer.com/10.1007%2Fs40201-019-00355-0
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N44195addf794457b93f93f4df892c6b4 rdf:first Nc618058b28884e3fac0e29d9fc4c16b2
55 rdf:rest N484e3c66c012439a8bde4dd3580ef3a9
56 N484e3c66c012439a8bde4dd3580ef3a9 rdf:first N658cf30d5a814f2dbcfbdc2748f8c1fd
57 rdf:rest Nd276f9f24b2840ca81d18511aa14fcad
58 N59560f9844074bc693ad84eac1786d31 rdf:first Ne33b017c5c194a5e977134509a178123
59 rdf:rest rdf:nil
60 N59b25cee220047ae8d6016288052c430 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N658cf30d5a814f2dbcfbdc2748f8c1fd schema:affiliation https://www.grid.ac/institutes/grid.412553.4
63 schema:familyName Shayegan
64 schema:givenName Jalal
65 rdf:type schema:Person
66 N85c727a7ac66427c884276062742aeb7 schema:affiliation https://www.grid.ac/institutes/grid.411600.2
67 schema:familyName Mirabi
68 schema:givenName Maryam
69 rdf:type schema:Person
70 Nbeea987ad02748898c7664760bbdc0d3 schema:name doi
71 schema:value 10.1007/s40201-019-00355-0
72 rdf:type schema:PropertyValue
73 Nc618058b28884e3fac0e29d9fc4c16b2 schema:affiliation https://www.grid.ac/institutes/grid.411600.2
74 schema:familyName Mehrabadi
75 schema:givenName Abdollah Rashidi
76 rdf:type schema:Person
77 Nc9f040f3cd204359b11279a06992d38e rdf:first Ne88977ad58f34564bb8b1f1580e417bc
78 rdf:rest N44195addf794457b93f93f4df892c6b4
79 Nd276f9f24b2840ca81d18511aa14fcad rdf:first N85c727a7ac66427c884276062742aeb7
80 rdf:rest N59560f9844074bc693ad84eac1786d31
81 Nd4f1a3b79abd47909a619a5193b3a67d schema:name dimensions_id
82 schema:value pub.1112685526
83 rdf:type schema:PropertyValue
84 Ndc4f894fd0ae450d83573d766f319dd8 schema:name readcube_id
85 schema:value 0ac78fb2098d5b62b6015d240fbdb787f0965e558d89bf40d933850ab96c6d59
86 rdf:type schema:PropertyValue
87 Ne33b017c5c194a5e977134509a178123 schema:affiliation https://www.grid.ac/institutes/grid.412668.f
88 schema:familyName Madaeni
89 schema:givenName Sayed Siavash
90 rdf:type schema:Person
91 Ne88977ad58f34564bb8b1f1580e417bc schema:affiliation https://www.grid.ac/institutes/grid.411600.2
92 schema:familyName Jalali
93 schema:givenName Sajjad
94 rdf:type schema:Person
95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
96 schema:name Engineering
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
99 schema:name Chemical Engineering
100 rdf:type schema:DefinedTerm
101 sg:journal.1297408 schema:issn 1735-1979
102 1735-2746
103 schema:name Journal of Environmental Health Science and Engineering
104 rdf:type schema:Periodical
105 sg:pub.10.1186/s40201-015-0217-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027026806
106 https://doi.org/10.1186/s40201-015-0217-8
107 rdf:type schema:CreativeWork
108 sg:pub.10.3103/s0003701x10040080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048049865
109 https://doi.org/10.3103/s0003701x10040080
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/b978-0-12-813926-4.00009-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110125337
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.desal.2007.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036770799
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.desal.2008.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032119402
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.desal.2014.03.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021494460
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.desal.2017.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090314311
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.desal.2017.08.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091495295
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.desal.2017.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091877545
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.desal.2018.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100811956
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.desal.2018.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105431746
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.jiec.2018.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105699932
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.memsci.2007.02.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045288509
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.memsci.2016.11.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041357938
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.memsci.2017.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054000163
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.memsci.2017.06.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086060073
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.memsci.2017.06.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090384574
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.memsci.2017.06.087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090383077
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.memsci.2017.07.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090738204
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.memsci.2017.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091507794
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.memsci.2018.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100946722
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.memsci.2018.04.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103598759
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.memsci.2018.08.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106382761
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.oceaneng.2018.05.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104396809
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.seppur.2012.01.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028211119
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/s0266-3538(03)00067-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042268355
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1021/acs.langmuir.6b01012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055117273
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1039/c5ta04471e schema:sameAs https://app.dimensions.ai/details/publication/pub.1031077544
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1039/c6nr03503e schema:sameAs https://app.dimensions.ai/details/publication/pub.1018460575
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.411600.2 schema:alternateName Shahid Beheshti University of Medical Sciences
166 schema:name Department of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.412553.4 schema:alternateName Sharif University of Technology
169 schema:name Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.412668.f schema:alternateName Razi University
172 schema:name Department of Chemical Engineering, Razi University, Kermanshah, Iran
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...