Effect of Ag Addition on Microstructure, Mechanical and Corrosion Properties of Mg–Nd–Zn–Zr Alloy for Orthopedic Application View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-09-07

AUTHORS

Yu-Jin Nie, Jian-Wei Dai, Xiao-Bo Zhang

ABSTRACT

The as-extruded Mg–3Nd–0.2Zn–0.4Zr–xAg (x = 0, 0.2, 0.5, 1 wt%) alloys were prepared for biomedical applications. Scanning electron microscope, electron backscattered diffraction, X-ray diffraction, tensile test machine, electrochemical workstation, and immersion experiments were used to study microstructures, mechanical properties, and corrosion behavior of the as-extruded alloys. The results indicate that the microstructures of all the as-extruded alloys are composed of coarse undynamic recrystallized grains, fine equiaxed recrystallized grains, and precipitated phases. Ag element plays a positive role in promoting dynamic recrystallization and grain refinement. And during the extrusion, all the four alloys generate a 101¯0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\langle {10\overline{1}0} \right\rangle$$\end{document}//ED fiber texture. With the increase of Ag element, the volume fraction of Mg12Nd phase increases and then decreases slightly. By increasing Ag addition, both yield strength and ultimate tensile strength of the as-extruded alloys reduce first and then improve, and the elongation improves gradually from 9.4 to 12.7%. More importantly, the addition of Ag accelerates corrosion of the as-extruded alloys in simulated body fluid, and all the as-extruded alloys show uniform corrosion mode. More... »

PAGES

1-15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40195-022-01464-w

DOI

http://dx.doi.org/10.1007/s40195-022-01464-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150829074


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, 211167, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.453547.4", 
          "name": [
            "School of Materials Science and Engineering, Nanjing Institute of Technology, 211167, Nanjing, China", 
            "Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, 211167, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nie", 
        "givenName": "Yu-Jin", 
        "id": "sg:person.011553755540.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011553755540.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, 211167, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.453547.4", 
          "name": [
            "School of Materials Science and Engineering, Nanjing Institute of Technology, 211167, Nanjing, China", 
            "Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, 211167, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dai", 
        "givenName": "Jian-Wei", 
        "id": "sg:person.015702657651.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015702657651.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, 211167, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.453547.4", 
          "name": [
            "School of Materials Science and Engineering, Nanjing Institute of Technology, 211167, Nanjing, China", 
            "Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, 211167, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xiao-Bo", 
        "id": "sg:person.013023747065.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013023747065.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s40195-019-00969-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123089505", 
          "https://doi.org/10.1007/s40195-019-00969-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-019-03923-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112262143", 
          "https://doi.org/10.1007/s11665-019-03923-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40195-020-01164-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1132504120", 
          "https://doi.org/10.1007/s40195-020-01164-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40195-022-01377-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1145202189", 
          "https://doi.org/10.1007/s40195-022-01377-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40195-018-0712-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101141379", 
          "https://doi.org/10.1007/s40195-018-0712-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12613-021-2377-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1148443061", 
          "https://doi.org/10.1007/s12613-021-2377-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-09-07", 
    "datePublishedReg": "2022-09-07", 
    "description": "The as-extruded Mg\u20133Nd\u20130.2Zn\u20130.4Zr\u2013xAg (x\u2009=\u20090, 0.2, 0.5, 1\u00a0wt%) alloys were prepared for biomedical applications. Scanning electron microscope, electron backscattered diffraction, X-ray diffraction, tensile test machine, electrochemical workstation, and immersion experiments were used to study microstructures, mechanical properties, and corrosion behavior of the as-extruded alloys. The results indicate that the microstructures of all the as-extruded alloys are composed of coarse undynamic recrystallized grains, fine equiaxed recrystallized grains, and precipitated phases. Ag element plays a positive role in promoting dynamic recrystallization and grain refinement. And during the extrusion, all the four alloys generate a 101\u00af0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\left\\langle {10\\overline{1}0} \\right\\rangle$$\\end{document}//ED fiber texture. With the increase of Ag element, the volume fraction of Mg12Nd phase increases and then decreases slightly. By increasing Ag addition, both yield strength and ultimate tensile strength of the as-extruded alloys reduce first and then improve, and the elongation improves gradually from 9.4 to 12.7%. More importantly, the addition of Ag accelerates corrosion of the as-extruded alloys in simulated body fluid, and all the as-extruded alloys show uniform corrosion mode.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40195-022-01464-w", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1381337", 
        "issn": [
          "0412-1961", 
          "1006-7191"
        ], 
        "name": "Acta Metallurgica Sinica (English Letters)", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "Ag addition", 
      "uniform corrosion mode", 
      "Zn-Zr alloy", 
      "tensile test machine", 
      "Ag element", 
      "corrosion properties", 
      "grain refinement", 
      "addition of Ag", 
      "corrosion mode", 
      "corrosion behavior", 
      "Mg-3Nd", 
      "dynamic recrystallization", 
      "mechanical properties", 
      "recrystallized grains", 
      "tensile strength", 
      "Mg-Nd", 
      "orthopedic applications", 
      "test machine", 
      "electrochemical workstation", 
      "alloy", 
      "volume fraction", 
      "immersion experiments", 
      "fiber texture", 
      "X-ray diffraction", 
      "microstructure", 
      "electron microscope", 
      "phase increases", 
      "biomedical applications", 
      "diffraction", 
      "strength", 
      "grains", 
      "corrosion", 
      "body fluids", 
      "Mechanical", 
      "properties", 
      "recrystallization", 
      "applications", 
      "extrusion", 
      "microscope", 
      "elongation", 
      "elements", 
      "machine", 
      "texture", 
      "fluid", 
      "mode", 
      "Ag", 
      "phase", 
      "addition", 
      "behavior", 
      "increase", 
      "refinement", 
      "experiments", 
      "workstations", 
      "fraction", 
      "electrons", 
      "results", 
      "effect", 
      "positive role", 
      "role"
    ], 
    "name": "Effect of Ag Addition on Microstructure, Mechanical and Corrosion Properties of Mg\u2013Nd\u2013Zn\u2013Zr Alloy for Orthopedic Application", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150829074"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40195-022-01464-w"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40195-022-01464-w", 
      "https://app.dimensions.ai/details/publication/pub.1150829074"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_921.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40195-022-01464-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40195-022-01464-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40195-022-01464-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40195-022-01464-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40195-022-01464-w'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      87 URIs      73 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40195-022-01464-w schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N7090659ddbea4b308b5833b5c3020f35
4 schema:citation sg:pub.10.1007/s11665-019-03923-5
5 sg:pub.10.1007/s12613-021-2377-0
6 sg:pub.10.1007/s40195-018-0712-x
7 sg:pub.10.1007/s40195-019-00969-1
8 sg:pub.10.1007/s40195-020-01164-3
9 sg:pub.10.1007/s40195-022-01377-8
10 schema:datePublished 2022-09-07
11 schema:datePublishedReg 2022-09-07
12 schema:description The as-extruded Mg–3Nd–0.2Zn–0.4Zr–xAg (x = 0, 0.2, 0.5, 1 wt%) alloys were prepared for biomedical applications. Scanning electron microscope, electron backscattered diffraction, X-ray diffraction, tensile test machine, electrochemical workstation, and immersion experiments were used to study microstructures, mechanical properties, and corrosion behavior of the as-extruded alloys. The results indicate that the microstructures of all the as-extruded alloys are composed of coarse undynamic recrystallized grains, fine equiaxed recrystallized grains, and precipitated phases. Ag element plays a positive role in promoting dynamic recrystallization and grain refinement. And during the extrusion, all the four alloys generate a 101¯0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\langle {10\overline{1}0} \right\rangle$$\end{document}//ED fiber texture. With the increase of Ag element, the volume fraction of Mg12Nd phase increases and then decreases slightly. By increasing Ag addition, both yield strength and ultimate tensile strength of the as-extruded alloys reduce first and then improve, and the elongation improves gradually from 9.4 to 12.7%. More importantly, the addition of Ag accelerates corrosion of the as-extruded alloys in simulated body fluid, and all the as-extruded alloys show uniform corrosion mode.
13 schema:genre article
14 schema:isAccessibleForFree false
15 schema:isPartOf sg:journal.1381337
16 schema:keywords Ag
17 Ag addition
18 Ag element
19 Mechanical
20 Mg-3Nd
21 Mg-Nd
22 X-ray diffraction
23 Zn-Zr alloy
24 addition
25 addition of Ag
26 alloy
27 applications
28 behavior
29 biomedical applications
30 body fluids
31 corrosion
32 corrosion behavior
33 corrosion mode
34 corrosion properties
35 diffraction
36 dynamic recrystallization
37 effect
38 electrochemical workstation
39 electron microscope
40 electrons
41 elements
42 elongation
43 experiments
44 extrusion
45 fiber texture
46 fluid
47 fraction
48 grain refinement
49 grains
50 immersion experiments
51 increase
52 machine
53 mechanical properties
54 microscope
55 microstructure
56 mode
57 orthopedic applications
58 phase
59 phase increases
60 positive role
61 properties
62 recrystallization
63 recrystallized grains
64 refinement
65 results
66 role
67 strength
68 tensile strength
69 tensile test machine
70 test machine
71 texture
72 uniform corrosion mode
73 volume fraction
74 workstations
75 schema:name Effect of Ag Addition on Microstructure, Mechanical and Corrosion Properties of Mg–Nd–Zn–Zr Alloy for Orthopedic Application
76 schema:pagination 1-15
77 schema:productId N977590cdd1e645b092d11b4bf029e060
78 Na61a7d7504254cddaecb867f6424793d
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150829074
80 https://doi.org/10.1007/s40195-022-01464-w
81 schema:sdDatePublished 2022-12-01T06:44
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher Na40d5449827143afadf77e4706d620b0
84 schema:url https://doi.org/10.1007/s40195-022-01464-w
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N7090659ddbea4b308b5833b5c3020f35 rdf:first sg:person.011553755540.77
89 rdf:rest N75f3a767664a4104acc5350f889fcac5
90 N75f3a767664a4104acc5350f889fcac5 rdf:first sg:person.015702657651.38
91 rdf:rest Ne999496b836f4feba5481d4f64dedf9e
92 N977590cdd1e645b092d11b4bf029e060 schema:name doi
93 schema:value 10.1007/s40195-022-01464-w
94 rdf:type schema:PropertyValue
95 Na40d5449827143afadf77e4706d620b0 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Na61a7d7504254cddaecb867f6424793d schema:name dimensions_id
98 schema:value pub.1150829074
99 rdf:type schema:PropertyValue
100 Ne999496b836f4feba5481d4f64dedf9e rdf:first sg:person.013023747065.36
101 rdf:rest rdf:nil
102 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
103 schema:name Engineering
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
106 schema:name Materials Engineering
107 rdf:type schema:DefinedTerm
108 sg:journal.1381337 schema:issn 0412-1961
109 1006-7191
110 schema:name Acta Metallurgica Sinica (English Letters)
111 schema:publisher Springer Nature
112 rdf:type schema:Periodical
113 sg:person.011553755540.77 schema:affiliation grid-institutes:grid.453547.4
114 schema:familyName Nie
115 schema:givenName Yu-Jin
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011553755540.77
117 rdf:type schema:Person
118 sg:person.013023747065.36 schema:affiliation grid-institutes:grid.453547.4
119 schema:familyName Zhang
120 schema:givenName Xiao-Bo
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013023747065.36
122 rdf:type schema:Person
123 sg:person.015702657651.38 schema:affiliation grid-institutes:grid.453547.4
124 schema:familyName Dai
125 schema:givenName Jian-Wei
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015702657651.38
127 rdf:type schema:Person
128 sg:pub.10.1007/s11665-019-03923-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112262143
129 https://doi.org/10.1007/s11665-019-03923-5
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s12613-021-2377-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148443061
132 https://doi.org/10.1007/s12613-021-2377-0
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s40195-018-0712-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1101141379
135 https://doi.org/10.1007/s40195-018-0712-x
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s40195-019-00969-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123089505
138 https://doi.org/10.1007/s40195-019-00969-1
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s40195-020-01164-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132504120
141 https://doi.org/10.1007/s40195-020-01164-3
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s40195-022-01377-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145202189
144 https://doi.org/10.1007/s40195-022-01377-8
145 rdf:type schema:CreativeWork
146 grid-institutes:grid.453547.4 schema:alternateName Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, 211167, Nanjing, China
147 schema:name Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, 211167, Nanjing, China
148 School of Materials Science and Engineering, Nanjing Institute of Technology, 211167, Nanjing, China
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...