Microstructure and Mechanical Property of Hot-Rolled Mg–2Ag Alloy Prepared with Multi-pass Rolling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-09-07

AUTHORS

H. Zhang, H. L. Hao, G. Y. Fu, B. S. Liu, R. G. Li, R. Z. Wu, H. C. Pan

ABSTRACT

A conventional multi-pass rolling is designed to form different microstructures in a Mg–2Ag alloy. The relationship between microstructure and mechanical property is investigated. The result shows that twin-induced nucleation plays a prominent role for the dynamic recrystallization (DRX) behavior of the rolled Mg–2Ag alloys. The DRXed grains distributed around elongated grains have random orientations but gradually turn to the concentrated orientation with strong basal texture when the rolling pass increases. The yield strength and ultimate tensile strength of rolled Mg–2Ag alloy gradually increase with increasing rolling pass. The elongation of rolled sample is gradually improved when the rolling pass increases from one to three, while a significant drop of elongation shows in the four-pass rolling sample. The strong basal texture, refined grains, high-density dislocations, and Ag segregation along grain boundaries are suggested to play a prominent role for enhancing the strength of Mg–Ag alloys, while the low-density dislocations, homogeneously fine-grained microstructure, and weak texture are critical for improving the ductility. More... »

PAGES

1-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40195-022-01462-y

DOI

http://dx.doi.org/10.1007/s40195-022-01462-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150829073


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, 110142, Shenyang, China", 
          "id": "http://www.grid.ac/institutes/grid.412564.0", 
          "name": [
            "School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, 110142, Shenyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "H.", 
        "id": "sg:person.014263511173.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014263511173.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, 110142, Shenyang, China", 
          "id": "http://www.grid.ac/institutes/grid.412564.0", 
          "name": [
            "School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, 110142, Shenyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hao", 
        "givenName": "H. L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, 110142, Shenyang, China", 
          "id": "http://www.grid.ac/institutes/grid.412564.0", 
          "name": [
            "School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, 110142, Shenyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fu", 
        "givenName": "G. Y.", 
        "id": "sg:person.016010242041.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016010242041.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, 110142, Shenyang, China", 
          "id": "http://www.grid.ac/institutes/grid.412564.0", 
          "name": [
            "School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, 110142, Shenyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "B. S.", 
        "id": "sg:person.012632477746.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012632477746.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, 110142, Shenyang, China", 
          "id": "http://www.grid.ac/institutes/grid.412564.0", 
          "name": [
            "School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, 110142, Shenyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "R. G.", 
        "id": "sg:person.010205640267.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010205640267.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, China", 
          "id": "http://www.grid.ac/institutes/grid.33764.35", 
          "name": [
            "Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "R. Z.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, 110819, Shenyang, China", 
          "id": "http://www.grid.ac/institutes/grid.412252.2", 
          "name": [
            "Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, 110819, Shenyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "H. C.", 
        "id": "sg:person.011430324461.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011430324461.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s40195-017-0695-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100349261", 
          "https://doi.org/10.1007/s40195-017-0695-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40195-018-0862-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110405157", 
          "https://doi.org/10.1007/s40195-018-0862-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40195-018-0732-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103638367", 
          "https://doi.org/10.1007/s40195-018-0732-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-020-79139-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1134388331", 
          "https://doi.org/10.1038/s41598-020-79139-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-021-06067-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1137145107", 
          "https://doi.org/10.1007/s10853-021-06067-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12613-021-2377-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1148443061", 
          "https://doi.org/10.1007/s12613-021-2377-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40195-020-01137-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1130994685", 
          "https://doi.org/10.1007/s40195-020-01137-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40195-020-01062-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1127600537", 
          "https://doi.org/10.1007/s40195-020-01062-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-09-07", 
    "datePublishedReg": "2022-09-07", 
    "description": "A conventional multi-pass rolling is designed to form different microstructures in a Mg\u20132Ag alloy. The relationship between microstructure and mechanical property is investigated. The result shows that twin-induced nucleation plays a prominent role for the dynamic recrystallization (DRX) behavior of the rolled Mg\u20132Ag alloys. The DRXed grains distributed around elongated grains have random orientations but gradually turn to the concentrated orientation with strong basal texture when the rolling pass increases. The yield strength and ultimate tensile strength of rolled Mg\u20132Ag alloy gradually increase with increasing rolling pass. The elongation of rolled sample is gradually improved when the rolling pass increases from one to three, while a significant drop of elongation shows in the four-pass rolling sample. The strong basal texture, refined grains, high-density dislocations, and Ag segregation along grain boundaries are suggested to play a prominent role for enhancing the strength of Mg\u2013Ag alloys, while the low-density dislocations, homogeneously fine-grained microstructure, and weak texture are critical for improving the ductility.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40195-022-01462-y", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8937861", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8937771", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1381337", 
        "issn": [
          "0412-1961", 
          "1006-7191"
        ], 
        "name": "Acta Metallurgica Sinica (English Letters)", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "multi-pass rolling", 
      "strong basal texture", 
      "basal texture", 
      "mechanical properties", 
      "dynamic recrystallization behavior", 
      "high-density dislocations", 
      "low-density dislocations", 
      "pass increases", 
      "DRXed grains", 
      "yield strength", 
      "recrystallization behavior", 
      "tensile strength", 
      "grain boundaries", 
      "different microstructures", 
      "alloy", 
      "microstructure", 
      "weak texture", 
      "Mg-Ag", 
      "Ag segregation", 
      "rolling", 
      "refined grains", 
      "random orientation", 
      "rolling sample", 
      "strength", 
      "grains", 
      "ductility", 
      "dislocations", 
      "texture", 
      "properties", 
      "Hot", 
      "nucleation", 
      "drop", 
      "orientation", 
      "elongation", 
      "significant drop", 
      "boundaries", 
      "pass", 
      "behavior", 
      "increase", 
      "segregation", 
      "samples", 
      "results", 
      "show", 
      "prominent role", 
      "role", 
      "relationship"
    ], 
    "name": "Microstructure and Mechanical Property of Hot-Rolled Mg\u20132Ag Alloy Prepared with Multi-pass Rolling", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150829073"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40195-022-01462-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40195-022-01462-y", 
      "https://app.dimensions.ai/details/publication/pub.1150829073"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_942.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40195-022-01462-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40195-022-01462-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40195-022-01462-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40195-022-01462-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40195-022-01462-y'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      76 URIs      60 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40195-022-01462-y schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N9fbbcbf6c5be4bd2ae11d9efe51e1b63
4 schema:citation sg:pub.10.1007/s10853-021-06067-x
5 sg:pub.10.1007/s12613-021-2377-0
6 sg:pub.10.1007/s40195-017-0695-z
7 sg:pub.10.1007/s40195-018-0732-6
8 sg:pub.10.1007/s40195-018-0862-x
9 sg:pub.10.1007/s40195-020-01062-8
10 sg:pub.10.1007/s40195-020-01137-6
11 sg:pub.10.1038/s41598-020-79139-8
12 schema:datePublished 2022-09-07
13 schema:datePublishedReg 2022-09-07
14 schema:description A conventional multi-pass rolling is designed to form different microstructures in a Mg–2Ag alloy. The relationship between microstructure and mechanical property is investigated. The result shows that twin-induced nucleation plays a prominent role for the dynamic recrystallization (DRX) behavior of the rolled Mg–2Ag alloys. The DRXed grains distributed around elongated grains have random orientations but gradually turn to the concentrated orientation with strong basal texture when the rolling pass increases. The yield strength and ultimate tensile strength of rolled Mg–2Ag alloy gradually increase with increasing rolling pass. The elongation of rolled sample is gradually improved when the rolling pass increases from one to three, while a significant drop of elongation shows in the four-pass rolling sample. The strong basal texture, refined grains, high-density dislocations, and Ag segregation along grain boundaries are suggested to play a prominent role for enhancing the strength of Mg–Ag alloys, while the low-density dislocations, homogeneously fine-grained microstructure, and weak texture are critical for improving the ductility.
15 schema:genre article
16 schema:isAccessibleForFree false
17 schema:isPartOf sg:journal.1381337
18 schema:keywords Ag segregation
19 DRXed grains
20 Hot
21 Mg-Ag
22 alloy
23 basal texture
24 behavior
25 boundaries
26 different microstructures
27 dislocations
28 drop
29 ductility
30 dynamic recrystallization behavior
31 elongation
32 grain boundaries
33 grains
34 high-density dislocations
35 increase
36 low-density dislocations
37 mechanical properties
38 microstructure
39 multi-pass rolling
40 nucleation
41 orientation
42 pass
43 pass increases
44 prominent role
45 properties
46 random orientation
47 recrystallization behavior
48 refined grains
49 relationship
50 results
51 role
52 rolling
53 rolling sample
54 samples
55 segregation
56 show
57 significant drop
58 strength
59 strong basal texture
60 tensile strength
61 texture
62 weak texture
63 yield strength
64 schema:name Microstructure and Mechanical Property of Hot-Rolled Mg–2Ag Alloy Prepared with Multi-pass Rolling
65 schema:pagination 1-8
66 schema:productId N4d791ef6b75a4fd8a3178c1f31ed0637
67 N4e57cd3f313341fb9697c38b7e77799d
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150829073
69 https://doi.org/10.1007/s40195-022-01462-y
70 schema:sdDatePublished 2022-12-01T06:44
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Nea6fed2cd1ff49e5bdaf46e2ac7a7bfc
73 schema:url https://doi.org/10.1007/s40195-022-01462-y
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N2bc24c918c1147f98914c1c06b447137 rdf:first sg:person.016010242041.92
78 rdf:rest N6805dd0401a644ad8a368c2544986e03
79 N34fae41cf5c140c4b10ea2b46968c666 rdf:first sg:person.010205640267.17
80 rdf:rest Neb17fd1c553d4b3f91a8b379cf79079a
81 N4d791ef6b75a4fd8a3178c1f31ed0637 schema:name dimensions_id
82 schema:value pub.1150829073
83 rdf:type schema:PropertyValue
84 N4e57cd3f313341fb9697c38b7e77799d schema:name doi
85 schema:value 10.1007/s40195-022-01462-y
86 rdf:type schema:PropertyValue
87 N6805dd0401a644ad8a368c2544986e03 rdf:first sg:person.012632477746.47
88 rdf:rest N34fae41cf5c140c4b10ea2b46968c666
89 N69f6d21197494f6f8fb0758e4f2edc86 rdf:first sg:person.011430324461.66
90 rdf:rest rdf:nil
91 N6d6d72d7319240d7a2ef0f85669ec9ff rdf:first Nce4b63b086c3411b821241be5b91f799
92 rdf:rest N2bc24c918c1147f98914c1c06b447137
93 N9fbbcbf6c5be4bd2ae11d9efe51e1b63 rdf:first sg:person.014263511173.69
94 rdf:rest N6d6d72d7319240d7a2ef0f85669ec9ff
95 Nce4b63b086c3411b821241be5b91f799 schema:affiliation grid-institutes:grid.412564.0
96 schema:familyName Hao
97 schema:givenName H. L.
98 rdf:type schema:Person
99 Nd00fa32ccae8481ca26268574a721836 schema:affiliation grid-institutes:grid.33764.35
100 schema:familyName Wu
101 schema:givenName R. Z.
102 rdf:type schema:Person
103 Nea6fed2cd1ff49e5bdaf46e2ac7a7bfc schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Neb17fd1c553d4b3f91a8b379cf79079a rdf:first Nd00fa32ccae8481ca26268574a721836
106 rdf:rest N69f6d21197494f6f8fb0758e4f2edc86
107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
108 schema:name Engineering
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
111 schema:name Materials Engineering
112 rdf:type schema:DefinedTerm
113 sg:grant.8937771 http://pending.schema.org/fundedItem sg:pub.10.1007/s40195-022-01462-y
114 rdf:type schema:MonetaryGrant
115 sg:grant.8937861 http://pending.schema.org/fundedItem sg:pub.10.1007/s40195-022-01462-y
116 rdf:type schema:MonetaryGrant
117 sg:journal.1381337 schema:issn 0412-1961
118 1006-7191
119 schema:name Acta Metallurgica Sinica (English Letters)
120 schema:publisher Springer Nature
121 rdf:type schema:Periodical
122 sg:person.010205640267.17 schema:affiliation grid-institutes:grid.412564.0
123 schema:familyName Li
124 schema:givenName R. G.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010205640267.17
126 rdf:type schema:Person
127 sg:person.011430324461.66 schema:affiliation grid-institutes:grid.412252.2
128 schema:familyName Pan
129 schema:givenName H. C.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011430324461.66
131 rdf:type schema:Person
132 sg:person.012632477746.47 schema:affiliation grid-institutes:grid.412564.0
133 schema:familyName Liu
134 schema:givenName B. S.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012632477746.47
136 rdf:type schema:Person
137 sg:person.014263511173.69 schema:affiliation grid-institutes:grid.412564.0
138 schema:familyName Zhang
139 schema:givenName H.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014263511173.69
141 rdf:type schema:Person
142 sg:person.016010242041.92 schema:affiliation grid-institutes:grid.412564.0
143 schema:familyName Fu
144 schema:givenName G. Y.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016010242041.92
146 rdf:type schema:Person
147 sg:pub.10.1007/s10853-021-06067-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1137145107
148 https://doi.org/10.1007/s10853-021-06067-x
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s12613-021-2377-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148443061
151 https://doi.org/10.1007/s12613-021-2377-0
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s40195-017-0695-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1100349261
154 https://doi.org/10.1007/s40195-017-0695-z
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s40195-018-0732-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103638367
157 https://doi.org/10.1007/s40195-018-0732-6
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s40195-018-0862-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110405157
160 https://doi.org/10.1007/s40195-018-0862-x
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s40195-020-01062-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127600537
163 https://doi.org/10.1007/s40195-020-01062-8
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s40195-020-01137-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130994685
166 https://doi.org/10.1007/s40195-020-01137-6
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/s41598-020-79139-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134388331
169 https://doi.org/10.1038/s41598-020-79139-8
170 rdf:type schema:CreativeWork
171 grid-institutes:grid.33764.35 schema:alternateName Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, China
172 schema:name Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, China
173 rdf:type schema:Organization
174 grid-institutes:grid.412252.2 schema:alternateName Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, 110819, Shenyang, China
175 schema:name Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, 110819, Shenyang, China
176 rdf:type schema:Organization
177 grid-institutes:grid.412564.0 schema:alternateName School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, 110142, Shenyang, China
178 schema:name School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, 110142, Shenyang, China
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...