Ingenious Interlacement of CoNiO2 on Carbon Nanotubes for Highly Stable Lithium-Ion Batteries View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-08-16

AUTHORS

Yu-Shen Zhao, Chang-Shuo Li, Ze-Chen Lv, Peng-Fei Wang, Ting-Feng Yi

ABSTRACT

Nickel–cobalt oxide is considered as a promising anode for lithium-ion battery, owing to its high specific capacity, simple synthesis process and high safety. However, like most transition metal oxide anode materials, nickel–cobalt oxide suffers from poor conductivity, easy agglomeration and large volume expansion in the charging and discharging process, causing an inferior cycling lifespan. Here we report a structure design that CoNiO2 particles are ingeniously interlaced on carbon nanotubes by a simple solvothermal method. These nanotubes are irregularly intertwined to obtain an independent electrode structure with high electronic conductivity, which can also alleviate the notorious volume expansion. Consequently, the corresponding lithium-ion battery shows superior electrochemical performance. It provides a discharge capacity of 1213.7 mAh g−1 at 0.5 A g−1, and can be stable over 100 cycles with a capacity retention of 96.45%. Furthermore, the battery can also deliver a reversible capacity of 544.8 mAh g−1 at the high current density 3 A g−1. This work provides a unique idea for the performance improvement of nickel–cobalt oxide anode for lithium-ion batteries. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40195-022-01448-w

DOI

http://dx.doi.org/10.1007/s40195-022-01448-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150274684


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Resources and Materials, Northeastern University at Qinhuangdao, 066004, Qinhuangdao, China", 
          "id": "http://www.grid.ac/institutes/grid.412252.2", 
          "name": [
            "School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, China", 
            "School of Resources and Materials, Northeastern University at Qinhuangdao, 066004, Qinhuangdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Yu-Shen", 
        "id": "sg:person.011700572624.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011700572624.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Control Engineering, Northeastern University at Qinhuangdao, 066004, Qinhuangdao, Hebei, China", 
          "id": "http://www.grid.ac/institutes/grid.412252.2", 
          "name": [
            "School of Control Engineering, Northeastern University at Qinhuangdao, 066004, Qinhuangdao, Hebei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Chang-Shuo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Resources and Materials, Northeastern University at Qinhuangdao, 066004, Qinhuangdao, China", 
          "id": "http://www.grid.ac/institutes/grid.412252.2", 
          "name": [
            "School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, China", 
            "School of Resources and Materials, Northeastern University at Qinhuangdao, 066004, Qinhuangdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lv", 
        "givenName": "Ze-Chen", 
        "id": "sg:person.015321267546.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015321267546.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Resources and Materials, Northeastern University at Qinhuangdao, 066004, Qinhuangdao, China", 
          "id": "http://www.grid.ac/institutes/grid.412252.2", 
          "name": [
            "School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, China", 
            "School of Resources and Materials, Northeastern University at Qinhuangdao, 066004, Qinhuangdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Peng-Fei", 
        "id": "sg:person.016301307242.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016301307242.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, 066004, Qinhuangdao, China", 
          "id": "http://www.grid.ac/institutes/grid.412252.2", 
          "name": [
            "School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, China", 
            "School of Resources and Materials, Northeastern University at Qinhuangdao, 066004, Qinhuangdao, China", 
            "Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, 066004, Qinhuangdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yi", 
        "givenName": "Ting-Feng", 
        "id": "sg:person.012214512362.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012214512362.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12598-020-01499-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1129740311", 
          "https://doi.org/10.1007/s12598-020-01499-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40195-020-01177-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1134415967", 
          "https://doi.org/10.1007/s40195-020-01177-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12598-021-01738-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1137567112", 
          "https://doi.org/10.1007/s12598-021-01738-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40195-021-01205-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1135746434", 
          "https://doi.org/10.1007/s40195-021-01205-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12598-021-01742-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1138692325", 
          "https://doi.org/10.1007/s12598-021-01742-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40195-020-01095-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1128969538", 
          "https://doi.org/10.1007/s40195-020-01095-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-08-16", 
    "datePublishedReg": "2022-08-16", 
    "description": "Nickel\u2013cobalt oxide is considered as a promising anode for lithium-ion battery, owing to its high specific capacity, simple synthesis process and high safety. However, like most transition metal oxide anode materials, nickel\u2013cobalt oxide suffers from poor conductivity, easy agglomeration and large volume expansion in the charging and discharging process, causing an inferior cycling lifespan. Here we report a structure design that CoNiO2 particles are ingeniously interlaced on carbon nanotubes by a simple solvothermal method. These nanotubes are irregularly intertwined to obtain an independent electrode structure with high electronic conductivity, which can also alleviate the notorious volume expansion. Consequently, the corresponding lithium-ion battery shows superior electrochemical performance. It provides a discharge capacity of 1213.7 mAh g\u22121 at 0.5 A g\u22121, and can be stable over 100 cycles with a capacity retention of 96.45%. Furthermore, the battery can also deliver a reversible capacity of 544.8 mAh g\u22121 at the high current density 3 A g\u22121. This work provides a unique idea for the performance improvement of nickel\u2013cobalt oxide anode for lithium-ion batteries.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40195-022-01448-w", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1381337", 
        "issn": [
          "0412-1961", 
          "1006-7191"
        ], 
        "name": "Acta Metallurgica Sinica (English Letters)", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "lithium-ion batteries", 
      "corresponding lithium-ion battery", 
      "transition metal oxide anode materials", 
      "metal oxide anode materials", 
      "stable lithium-ion batteries", 
      "carbon nanotubes", 
      "superior electrochemical performance", 
      "nickel cobalt oxide", 
      "high specific capacity", 
      "oxide anode materials", 
      "high electronic conductivity", 
      "simple synthesis process", 
      "simple solvothermal method", 
      "large volume expansion", 
      "electrochemical performance", 
      "reversible capacity", 
      "capacity retention", 
      "specific capacity", 
      "discharge capacity", 
      "promising anode", 
      "anode materials", 
      "cycling lifespan", 
      "electronic conductivity", 
      "volume expansion", 
      "poor conductivity", 
      "solvothermal method", 
      "easy agglomeration", 
      "oxide anodes", 
      "synthesis process", 
      "electrode structure", 
      "nanotubes", 
      "discharging process", 
      "batteries", 
      "structure design", 
      "high safety", 
      "anode", 
      "conductivity", 
      "CoNiO2", 
      "mAh", 
      "performance improvement", 
      "oxide", 
      "agglomeration", 
      "capacity", 
      "particles", 
      "materials", 
      "structure", 
      "process", 
      "retention", 
      "design", 
      "performance", 
      "unique ideas", 
      "expansion", 
      "cycle", 
      "work", 
      "method", 
      "suffers", 
      "improvement", 
      "interlacements", 
      "safety", 
      "lifespan", 
      "idea"
    ], 
    "name": "Ingenious Interlacement of CoNiO2 on Carbon Nanotubes for Highly Stable Lithium-Ion Batteries", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150274684"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40195-022-01448-w"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40195-022-01448-w", 
      "https://app.dimensions.ai/details/publication/pub.1150274684"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_946.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40195-022-01448-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40195-022-01448-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40195-022-01448-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40195-022-01448-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40195-022-01448-w'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      89 URIs      75 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40195-022-01448-w schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author N45a36b97259a4579b3de0bc30ea63858
4 schema:citation sg:pub.10.1007/s12598-020-01499-x
5 sg:pub.10.1007/s12598-021-01738-9
6 sg:pub.10.1007/s12598-021-01742-z
7 sg:pub.10.1007/s40195-020-01095-z
8 sg:pub.10.1007/s40195-020-01177-y
9 sg:pub.10.1007/s40195-021-01205-5
10 schema:datePublished 2022-08-16
11 schema:datePublishedReg 2022-08-16
12 schema:description Nickel–cobalt oxide is considered as a promising anode for lithium-ion battery, owing to its high specific capacity, simple synthesis process and high safety. However, like most transition metal oxide anode materials, nickel–cobalt oxide suffers from poor conductivity, easy agglomeration and large volume expansion in the charging and discharging process, causing an inferior cycling lifespan. Here we report a structure design that CoNiO2 particles are ingeniously interlaced on carbon nanotubes by a simple solvothermal method. These nanotubes are irregularly intertwined to obtain an independent electrode structure with high electronic conductivity, which can also alleviate the notorious volume expansion. Consequently, the corresponding lithium-ion battery shows superior electrochemical performance. It provides a discharge capacity of 1213.7 mAh g−1 at 0.5 A g−1, and can be stable over 100 cycles with a capacity retention of 96.45%. Furthermore, the battery can also deliver a reversible capacity of 544.8 mAh g−1 at the high current density 3 A g−1. This work provides a unique idea for the performance improvement of nickel–cobalt oxide anode for lithium-ion batteries.
13 schema:genre article
14 schema:isAccessibleForFree false
15 schema:isPartOf sg:journal.1381337
16 schema:keywords CoNiO2
17 agglomeration
18 anode
19 anode materials
20 batteries
21 capacity
22 capacity retention
23 carbon nanotubes
24 conductivity
25 corresponding lithium-ion battery
26 cycle
27 cycling lifespan
28 design
29 discharge capacity
30 discharging process
31 easy agglomeration
32 electrochemical performance
33 electrode structure
34 electronic conductivity
35 expansion
36 high electronic conductivity
37 high safety
38 high specific capacity
39 idea
40 improvement
41 interlacements
42 large volume expansion
43 lifespan
44 lithium-ion batteries
45 mAh
46 materials
47 metal oxide anode materials
48 method
49 nanotubes
50 nickel cobalt oxide
51 oxide
52 oxide anode materials
53 oxide anodes
54 particles
55 performance
56 performance improvement
57 poor conductivity
58 process
59 promising anode
60 retention
61 reversible capacity
62 safety
63 simple solvothermal method
64 simple synthesis process
65 solvothermal method
66 specific capacity
67 stable lithium-ion batteries
68 structure
69 structure design
70 suffers
71 superior electrochemical performance
72 synthesis process
73 transition metal oxide anode materials
74 unique ideas
75 volume expansion
76 work
77 schema:name Ingenious Interlacement of CoNiO2 on Carbon Nanotubes for Highly Stable Lithium-Ion Batteries
78 schema:pagination 1-9
79 schema:productId N09f69aad7c12424b9e403012641054d9
80 Nc4a5b0f45d9948d5ad4ffbbdfd4ec705
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150274684
82 https://doi.org/10.1007/s40195-022-01448-w
83 schema:sdDatePublished 2022-12-01T06:44
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher N70bbeba30d5d4ae0a2d3970a85718897
86 schema:url https://doi.org/10.1007/s40195-022-01448-w
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N04c63f1b830846deb3864112cd8ad418 schema:affiliation grid-institutes:grid.412252.2
91 schema:familyName Li
92 schema:givenName Chang-Shuo
93 rdf:type schema:Person
94 N09f69aad7c12424b9e403012641054d9 schema:name dimensions_id
95 schema:value pub.1150274684
96 rdf:type schema:PropertyValue
97 N45a36b97259a4579b3de0bc30ea63858 rdf:first sg:person.011700572624.33
98 rdf:rest Nad8955f19c244df19d4f7117a955b395
99 N5d258560e5364b6f8f1dce143e3a9cee rdf:first sg:person.015321267546.70
100 rdf:rest Nd30181f0493f4284a9bb83a75076a52a
101 N6b3545f0254144628b5fe0219c1203db rdf:first sg:person.012214512362.47
102 rdf:rest rdf:nil
103 N70bbeba30d5d4ae0a2d3970a85718897 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Nad8955f19c244df19d4f7117a955b395 rdf:first N04c63f1b830846deb3864112cd8ad418
106 rdf:rest N5d258560e5364b6f8f1dce143e3a9cee
107 Nc4a5b0f45d9948d5ad4ffbbdfd4ec705 schema:name doi
108 schema:value 10.1007/s40195-022-01448-w
109 rdf:type schema:PropertyValue
110 Nd30181f0493f4284a9bb83a75076a52a rdf:first sg:person.016301307242.24
111 rdf:rest N6b3545f0254144628b5fe0219c1203db
112 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
113 schema:name Engineering
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
116 schema:name Resources Engineering and Extractive Metallurgy
117 rdf:type schema:DefinedTerm
118 sg:journal.1381337 schema:issn 0412-1961
119 1006-7191
120 schema:name Acta Metallurgica Sinica (English Letters)
121 schema:publisher Springer Nature
122 rdf:type schema:Periodical
123 sg:person.011700572624.33 schema:affiliation grid-institutes:grid.412252.2
124 schema:familyName Zhao
125 schema:givenName Yu-Shen
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011700572624.33
127 rdf:type schema:Person
128 sg:person.012214512362.47 schema:affiliation grid-institutes:grid.412252.2
129 schema:familyName Yi
130 schema:givenName Ting-Feng
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012214512362.47
132 rdf:type schema:Person
133 sg:person.015321267546.70 schema:affiliation grid-institutes:grid.412252.2
134 schema:familyName Lv
135 schema:givenName Ze-Chen
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015321267546.70
137 rdf:type schema:Person
138 sg:person.016301307242.24 schema:affiliation grid-institutes:grid.412252.2
139 schema:familyName Wang
140 schema:givenName Peng-Fei
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016301307242.24
142 rdf:type schema:Person
143 sg:pub.10.1007/s12598-020-01499-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1129740311
144 https://doi.org/10.1007/s12598-020-01499-x
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s12598-021-01738-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137567112
147 https://doi.org/10.1007/s12598-021-01738-9
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s12598-021-01742-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1138692325
150 https://doi.org/10.1007/s12598-021-01742-z
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s40195-020-01095-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1128969538
153 https://doi.org/10.1007/s40195-020-01095-z
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s40195-020-01177-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1134415967
156 https://doi.org/10.1007/s40195-020-01177-y
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s40195-021-01205-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135746434
159 https://doi.org/10.1007/s40195-021-01205-5
160 rdf:type schema:CreativeWork
161 grid-institutes:grid.412252.2 schema:alternateName Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, 066004, Qinhuangdao, China
162 School of Control Engineering, Northeastern University at Qinhuangdao, 066004, Qinhuangdao, Hebei, China
163 School of Resources and Materials, Northeastern University at Qinhuangdao, 066004, Qinhuangdao, China
164 schema:name Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, 066004, Qinhuangdao, China
165 School of Control Engineering, Northeastern University at Qinhuangdao, 066004, Qinhuangdao, Hebei, China
166 School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, China
167 School of Resources and Materials, Northeastern University at Qinhuangdao, 066004, Qinhuangdao, China
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...