Microstructural Features and Mechanical Behaviors of Al0.5Cr0.8CoFeNi2.5V0.2 High-Entropy Alloys Fabricated by Selective Laser Melting Technique View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-02-16

AUTHORS

Yao Yan, Wei-Dong Song, Ke-Feng Li, Kang Zhao, Tong-Tong Sun, Kai-Kai Song, Jian-Hong Gong, Li-Na Hu

ABSTRACT

In this work, high strength and ductile Al0.5Cr0.8CoFeNi2.5V0.2 high-entropy alloys (HEAs) were fabricated by the selective laser melting (SLM) technique. After orthogonal experiments, it was verified that a wide SLM processing parameter window can be used to produce crack-free samples for the investigated HEAs. All the printed HEA samples exhibit good densification higher than 98.3%. It was found that obvious epitaxial growth leads to the formation of the cylindrical and equiaxed ordered face-centered cubic (FCC) crystals, displaying the characteristics of sub-cylindrical and sub-cellular microstructures. The low-angle grain boundaries (LAGBs) prefer appearing around subgrain structures, while the high-angle grain boundaries (HAGBs) tend to form around coarse grains. Two HEA samples with high and low apparent densities were selected to observe their mechanical properties, which exhibit Vickers hardness higher than 263 HV and do not fail during compression. With increasing densification, the strength gradually rises. According to the engineering stress–strain curves during compression, the yield strength is higher than 530 MPa, while the strength near 40% engineering strain is larger than 1840 MPa. During deformation, a large density of dislocations becomes popular within subgrain structures together with the pre-existing dislocations from rapid solidification, leading to the formation of planar and cross slip bands. Within coarse cylindrical crystals, some deformation twins are also induced together with the appearance of a distinct copper-type texture during deformation. As a result, the as-printed samples display better mechanical properties than the as-cast counterpart. The present studies provide a very good HEA candidate for the SLM process, but more work should be conducted to achieve excellent comprehensive properties. More... »

PAGES

1-16

References to SciGraph publications

  • 2016-05-18. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off in NATURE
  • 2020-01-17. Microstructure and Mechanical Performance of Ti–6Al–4V Lattice Structures Manufactured via Electron Beam Melting (EBM): A Review in ACTA METALLURGICA SINICA (ENGLISH LETTERS)
  • 2016-04-04. Additive Manufacturing of High-Entropy Alloys by Laser Processing in JOM
  • 2019-05-23. A Novel Series of Refractory High-Entropy Alloys Ti2ZrHf0.5VNbx with High Specific Yield Strength and Good Ductility in ACTA METALLURGICA SINICA (ENGLISH LETTERS)
  • 2018-06. Automatic landing system design via multivariable model reference adaptive control in AEROSPACE SYSTEMS
  • 2020-06-03. Novel (CoFe2NiV0.5Mo0.2)100−xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties in ACTA METALLURGICA SINICA (ENGLISH LETTERS)
  • 2020-04-09. Achieving a High-Strength CoCrFeNiCu High-Entropy Alloy with an Ultrafine-Grained Structure via Friction Stir Processing in ACTA METALLURGICA SINICA (ENGLISH LETTERS)
  • 2013-10-16. Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy in JOM
  • 2020-11-03. Prediction of Primary Dendrite Arm Spacing in Pulsed Laser Surface Melted Single Crystal Superalloy in ACTA METALLURGICA SINICA (ENGLISH LETTERS)
  • 2019-01-30. Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae in NATURE COMMUNICATIONS
  • 2018-10-03. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys in NATURE COMMUNICATIONS
  • 2019-11-02. Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Spark Plasma Sintering in ACTA METALLURGICA SINICA (ENGLISH LETTERS)
  • 2019-10-10. Integrated Modeling of Process–Microstructure–Property Relations in Friction Stir Additive Manufacturing in ACTA METALLURGICA SINICA (ENGLISH LETTERS)
  • 2020-04-10. Preternatural Hexagonal High-Entropy Alloys: A Review in ACTA METALLURGICA SINICA (ENGLISH LETTERS)
  • 2020-02-11. Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy in NATURE COMMUNICATIONS
  • 2010-04. Dislocation nucleation governed softening and maximum strength in nano-twinned metals in NATURE
  • 2017-05-22. Enhanced Relative Slip Distance in Gas-Tungsten-Arc-Welded Al0.5CoCrFeNi High-Entropy Alloy in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2013-05-15. Optimizing mechanical properties of AlCoCrFeNiTix high-entropy alloys by tailoring microstructures in ACTA METALLURGICA SINICA (ENGLISH LETTERS)
  • 2015-04-04. A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2008-11. Role of deformation twin on texture evolution in cold-rolled commercial-purity Ti in JOURNAL OF MATERIALS RESEARCH
  • 2020-09-04. Mechanical Property Evaluation of a SLMed Martensitic Stainless Steel in ACTA METALLURGICA SINICA (ENGLISH LETTERS)
  • 2021-05-23. A Comprehensive Overview on the Latest Progress in the Additive Manufacturing of Metal Matrix Composites: Potential, Challenges, and Feasible Solutions in ACTA METALLURGICA SINICA (ENGLISH LETTERS)
  • 2021-02-02. Effects of Homogenized Treatment on Microstructure and Mechanical Properties of AlCoCrFeNi2.2 Near-Eutectic High-Entropy Alloy in ACTA METALLURGICA SINICA (ENGLISH LETTERS)
  • 2020-01-14. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment in ACTA METALLURGICA SINICA (ENGLISH LETTERS)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40195-022-01389-4

    DOI

    http://dx.doi.org/10.1007/s40195-022-01389-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1145630439


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Shenzhen Research Institute of Shandong University, 518057, Shenzhen, China", 
              "id": "http://www.grid.ac/institutes/grid.27255.37", 
              "name": [
                "Shenzhen Research Institute of Shandong University, 518057, Shenzhen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Yao", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 100081, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.43555.32", 
              "name": [
                "State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 100081, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Wei-Dong", 
            "id": "sg:person.013557467623.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013557467623.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Guangdong Institute of Materials and Processing, Guangdong Academy of Sciences, Guangdong University, 510650, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.464309.c", 
              "name": [
                "Guangdong Institute of Materials and Processing, Guangdong Academy of Sciences, Guangdong University, 510650, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Ke-Feng", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mechanical, Electrical and Information Engineering, Shandong University, 264209, Weihai, China", 
              "id": "http://www.grid.ac/institutes/grid.27255.37", 
              "name": [
                "School of Mechanical, Electrical and Information Engineering, Shandong University, 264209, Weihai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Kang", 
            "id": "sg:person.013460560503.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013460560503.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shenzhen Research Institute of Shandong University, 518057, Shenzhen, China", 
              "id": "http://www.grid.ac/institutes/grid.27255.37", 
              "name": [
                "Shenzhen Research Institute of Shandong University, 518057, Shenzhen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Tong-Tong", 
            "id": "sg:person.011107533256.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011107533256.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mechanical, Electrical and Information Engineering, Shandong University, 264209, Weihai, China", 
              "id": "http://www.grid.ac/institutes/grid.27255.37", 
              "name": [
                "Shenzhen Research Institute of Shandong University, 518057, Shenzhen, China", 
                "State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 100081, Beijing, China", 
                "School of Mechanical, Electrical and Information Engineering, Shandong University, 264209, Weihai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Kai-Kai", 
            "id": "sg:person.015065410116.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015065410116.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mechanical, Electrical and Information Engineering, Shandong University, 264209, Weihai, China", 
              "id": "http://www.grid.ac/institutes/grid.27255.37", 
              "name": [
                "School of Mechanical, Electrical and Information Engineering, Shandong University, 264209, Weihai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gong", 
            "givenName": "Jian-Hong", 
            "id": "sg:person.012211127737.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012211127737.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 250061, Jinan, China", 
              "id": "http://www.grid.ac/institutes/grid.27255.37", 
              "name": [
                "Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 250061, Jinan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Li-Na", 
            "id": "sg:person.01110307756.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110307756.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1557/jmr.2008.0354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045955805", 
              "https://doi.org/10.1557/jmr.2008.0354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-017-4140-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085559963", 
              "https://doi.org/10.1007/s11661-017-4140-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40195-020-01045-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126593932", 
              "https://doi.org/10.1007/s40195-020-01045-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature17981", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045635826", 
              "https://doi.org/10.1038/nature17981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40195-021-01249-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1138277629", 
              "https://doi.org/10.1007/s40195-021-01249-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-015-2882-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017243202", 
              "https://doi.org/10.1007/s11661-015-2882-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40195-020-01002-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124077570", 
              "https://doi.org/10.1007/s40195-020-01002-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40195-020-01072-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128196996", 
              "https://doi.org/10.1007/s40195-020-01072-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-08460-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111778162", 
              "https://doi.org/10.1038/s41467-019-08460-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-06600-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107275377", 
              "https://doi.org/10.1038/s41467-018-06600-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40195-020-01156-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132293125", 
              "https://doi.org/10.1007/s40195-020-01156-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40195-020-00998-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124151416", 
              "https://doi.org/10.1007/s40195-020-00998-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40195-019-00962-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122285643", 
              "https://doi.org/10.1007/s40195-019-00962-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40195-021-01196-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135072581", 
              "https://doi.org/10.1007/s40195-021-01196-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-020-14641-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124793337", 
              "https://doi.org/10.1038/s41467-020-14641-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-016-1888-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008144849", 
              "https://doi.org/10.1007/s11837-016-1888-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40195-020-01128-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130615121", 
              "https://doi.org/10.1007/s40195-020-01128-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-013-0771-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023337230", 
              "https://doi.org/10.1007/s11837-013-0771-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08929", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041097751", 
              "https://doi.org/10.1038/nature08929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40195-020-01037-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126497523", 
              "https://doi.org/10.1007/s40195-020-01037-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s42401-018-0006-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109793682", 
              "https://doi.org/10.1007/s42401-018-0006-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40195-019-00945-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121655709", 
              "https://doi.org/10.1007/s40195-019-00945-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40195-019-00921-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1115216164", 
              "https://doi.org/10.1007/s40195-019-00921-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40195-012-0174-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024319795", 
              "https://doi.org/10.1007/s40195-012-0174-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-02-16", 
        "datePublishedReg": "2022-02-16", 
        "description": "In this work, high strength and ductile Al0.5Cr0.8CoFeNi2.5V0.2 high-entropy alloys (HEAs) were fabricated by the selective laser melting (SLM) technique. After orthogonal experiments, it was verified that a wide SLM processing parameter window can be used to produce crack-free samples for the investigated HEAs. All the printed HEA samples exhibit good densification higher than 98.3%. It was found that obvious epitaxial growth leads to the formation of the cylindrical and equiaxed ordered face-centered cubic (FCC) crystals, displaying the characteristics of sub-cylindrical and sub-cellular microstructures. The low-angle grain boundaries (LAGBs) prefer appearing around\u00a0subgrain structures, while the high-angle grain boundaries (HAGBs) tend to form around coarse grains. Two HEA samples with high and low apparent densities were selected to observe their mechanical properties, which exhibit Vickers hardness higher than 263 HV and do not fail during compression. With increasing densification, the strength gradually rises. According to the engineering stress\u2013strain curves during compression, the yield strength is higher than 530\u00a0MPa, while the strength near 40% engineering strain is larger than 1840\u00a0MPa. During deformation, a large density of dislocations becomes popular within subgrain structures together with the pre-existing dislocations from rapid solidification, leading to the formation of planar and cross slip bands. Within coarse cylindrical crystals, some deformation twins are also induced together with the appearance of a distinct copper-type texture during deformation. As a result, the as-printed samples display better mechanical properties than the as-cast counterpart. The present studies provide a very good HEA candidate for the SLM process, but more work should be conducted to achieve excellent comprehensive properties.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s40195-022-01389-4", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8937834", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8931280", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1381337", 
            "issn": [
              "0412-1961", 
              "1006-7191"
            ], 
            "name": "Acta Metallurgica Sinica (English Letters)", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "high-entropy alloys", 
          "selective laser melting (SLM) technique", 
          "high-angle grain boundaries", 
          "low-angle grain boundaries", 
          "laser melting technique", 
          "HEA samples", 
          "mechanical properties", 
          "grain boundaries", 
          "subgrain structure", 
          "engineering stress-strain curves", 
          "excellent comprehensive properties", 
          "processing parameter window", 
          "good mechanical properties", 
          "crack-free samples", 
          "melting technique", 
          "stress-strain curves", 
          "low apparent density", 
          "copper-type texture", 
          "pre-existing dislocations", 
          "cast counterpart", 
          "SLM process", 
          "yield strength", 
          "entropy alloys", 
          "high strength", 
          "better densification", 
          "mechanical behavior", 
          "comprehensive properties", 
          "deformation twins", 
          "rapid solidification", 
          "microstructural features", 
          "slip bands", 
          "formation of planar", 
          "epitaxial growth", 
          "coarse grains", 
          "orthogonal experiment", 
          "engineering strain", 
          "parameter window", 
          "apparent density", 
          "alloy", 
          "densification", 
          "face-centered cubic crystals", 
          "MPa", 
          "deformation", 
          "strength", 
          "large density", 
          "properties", 
          "microstructure", 
          "dislocations", 
          "solidification", 
          "Vickers", 
          "HV", 
          "compression", 
          "density", 
          "cubic crystals", 
          "boundaries", 
          "structure", 
          "technique", 
          "grains", 
          "cylindrical crystal", 
          "band", 
          "work", 
          "crystals", 
          "planar", 
          "texture", 
          "formation", 
          "candidates", 
          "behavior", 
          "samples", 
          "characteristics", 
          "process", 
          "window", 
          "experiments", 
          "curves", 
          "results", 
          "strains", 
          "twins", 
          "counterparts", 
          "growth", 
          "more work", 
          "features", 
          "present study", 
          "study", 
          "appearance"
        ], 
        "name": "Microstructural Features and Mechanical Behaviors of Al0.5Cr0.8CoFeNi2.5V0.2 High-Entropy Alloys Fabricated by Selective Laser Melting Technique", 
        "pagination": "1-16", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1145630439"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40195-022-01389-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40195-022-01389-4", 
          "https://app.dimensions.ai/details/publication/pub.1145630439"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_932.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s40195-022-01389-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40195-022-01389-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40195-022-01389-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40195-022-01389-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40195-022-01389-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    292 TRIPLES      21 PREDICATES      129 URIs      97 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40195-022-01389-4 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nbf5c7c092a664fa9b90450ca2ceb1337
    4 schema:citation sg:pub.10.1007/s11661-015-2882-8
    5 sg:pub.10.1007/s11661-017-4140-8
    6 sg:pub.10.1007/s11837-013-0771-4
    7 sg:pub.10.1007/s11837-016-1888-z
    8 sg:pub.10.1007/s40195-012-0174-5
    9 sg:pub.10.1007/s40195-019-00921-3
    10 sg:pub.10.1007/s40195-019-00945-9
    11 sg:pub.10.1007/s40195-019-00962-8
    12 sg:pub.10.1007/s40195-020-00998-1
    13 sg:pub.10.1007/s40195-020-01002-6
    14 sg:pub.10.1007/s40195-020-01037-9
    15 sg:pub.10.1007/s40195-020-01045-9
    16 sg:pub.10.1007/s40195-020-01072-6
    17 sg:pub.10.1007/s40195-020-01128-7
    18 sg:pub.10.1007/s40195-020-01156-3
    19 sg:pub.10.1007/s40195-021-01196-3
    20 sg:pub.10.1007/s40195-021-01249-7
    21 sg:pub.10.1007/s42401-018-0006-z
    22 sg:pub.10.1038/nature08929
    23 sg:pub.10.1038/nature17981
    24 sg:pub.10.1038/s41467-018-06600-8
    25 sg:pub.10.1038/s41467-019-08460-2
    26 sg:pub.10.1038/s41467-020-14641-1
    27 sg:pub.10.1557/jmr.2008.0354
    28 schema:datePublished 2022-02-16
    29 schema:datePublishedReg 2022-02-16
    30 schema:description In this work, high strength and ductile Al0.5Cr0.8CoFeNi2.5V0.2 high-entropy alloys (HEAs) were fabricated by the selective laser melting (SLM) technique. After orthogonal experiments, it was verified that a wide SLM processing parameter window can be used to produce crack-free samples for the investigated HEAs. All the printed HEA samples exhibit good densification higher than 98.3%. It was found that obvious epitaxial growth leads to the formation of the cylindrical and equiaxed ordered face-centered cubic (FCC) crystals, displaying the characteristics of sub-cylindrical and sub-cellular microstructures. The low-angle grain boundaries (LAGBs) prefer appearing around subgrain structures, while the high-angle grain boundaries (HAGBs) tend to form around coarse grains. Two HEA samples with high and low apparent densities were selected to observe their mechanical properties, which exhibit Vickers hardness higher than 263 HV and do not fail during compression. With increasing densification, the strength gradually rises. According to the engineering stress–strain curves during compression, the yield strength is higher than 530 MPa, while the strength near 40% engineering strain is larger than 1840 MPa. During deformation, a large density of dislocations becomes popular within subgrain structures together with the pre-existing dislocations from rapid solidification, leading to the formation of planar and cross slip bands. Within coarse cylindrical crystals, some deformation twins are also induced together with the appearance of a distinct copper-type texture during deformation. As a result, the as-printed samples display better mechanical properties than the as-cast counterpart. The present studies provide a very good HEA candidate for the SLM process, but more work should be conducted to achieve excellent comprehensive properties.
    31 schema:genre article
    32 schema:isAccessibleForFree false
    33 schema:isPartOf sg:journal.1381337
    34 schema:keywords HEA samples
    35 HV
    36 MPa
    37 SLM process
    38 Vickers
    39 alloy
    40 apparent density
    41 appearance
    42 band
    43 behavior
    44 better densification
    45 boundaries
    46 candidates
    47 cast counterpart
    48 characteristics
    49 coarse grains
    50 comprehensive properties
    51 compression
    52 copper-type texture
    53 counterparts
    54 crack-free samples
    55 crystals
    56 cubic crystals
    57 curves
    58 cylindrical crystal
    59 deformation
    60 deformation twins
    61 densification
    62 density
    63 dislocations
    64 engineering strain
    65 engineering stress-strain curves
    66 entropy alloys
    67 epitaxial growth
    68 excellent comprehensive properties
    69 experiments
    70 face-centered cubic crystals
    71 features
    72 formation
    73 formation of planar
    74 good mechanical properties
    75 grain boundaries
    76 grains
    77 growth
    78 high strength
    79 high-angle grain boundaries
    80 high-entropy alloys
    81 large density
    82 laser melting technique
    83 low apparent density
    84 low-angle grain boundaries
    85 mechanical behavior
    86 mechanical properties
    87 melting technique
    88 microstructural features
    89 microstructure
    90 more work
    91 orthogonal experiment
    92 parameter window
    93 planar
    94 pre-existing dislocations
    95 present study
    96 process
    97 processing parameter window
    98 properties
    99 rapid solidification
    100 results
    101 samples
    102 selective laser melting (SLM) technique
    103 slip bands
    104 solidification
    105 strains
    106 strength
    107 stress-strain curves
    108 structure
    109 study
    110 subgrain structure
    111 technique
    112 texture
    113 twins
    114 window
    115 work
    116 yield strength
    117 schema:name Microstructural Features and Mechanical Behaviors of Al0.5Cr0.8CoFeNi2.5V0.2 High-Entropy Alloys Fabricated by Selective Laser Melting Technique
    118 schema:pagination 1-16
    119 schema:productId N1e05392dcffd4b308b5607bd212fdd77
    120 Ncb944caef3f941f2b91f913d14dd1871
    121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145630439
    122 https://doi.org/10.1007/s40195-022-01389-4
    123 schema:sdDatePublished 2022-08-04T17:11
    124 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    125 schema:sdPublisher Nabd0c80e79c34910a976a3b0583904a4
    126 schema:url https://doi.org/10.1007/s40195-022-01389-4
    127 sgo:license sg:explorer/license/
    128 sgo:sdDataset articles
    129 rdf:type schema:ScholarlyArticle
    130 N1e05392dcffd4b308b5607bd212fdd77 schema:name dimensions_id
    131 schema:value pub.1145630439
    132 rdf:type schema:PropertyValue
    133 N27585c52ba114cc58f81d421bb3558fd rdf:first sg:person.013557467623.55
    134 rdf:rest Ndb5f8232507f43bda9209cbabc41d876
    135 N7b01ecaa754b45558b426067d40d24c3 rdf:first sg:person.015065410116.21
    136 rdf:rest Nca1967c924ae46a3b475e30d3d4b5e31
    137 N87a91bc175484a6e88344b2dbc25c56e rdf:first sg:person.013460560503.59
    138 rdf:rest Nb3eb7318b5a84a37b4fdc3ec8533e114
    139 Na5a28d995b04488d8a378aac6e52960a schema:affiliation grid-institutes:grid.27255.37
    140 schema:familyName Yan
    141 schema:givenName Yao
    142 rdf:type schema:Person
    143 Nabd0c80e79c34910a976a3b0583904a4 schema:name Springer Nature - SN SciGraph project
    144 rdf:type schema:Organization
    145 Nb3eb7318b5a84a37b4fdc3ec8533e114 rdf:first sg:person.011107533256.93
    146 rdf:rest N7b01ecaa754b45558b426067d40d24c3
    147 Nbf5c7c092a664fa9b90450ca2ceb1337 rdf:first Na5a28d995b04488d8a378aac6e52960a
    148 rdf:rest N27585c52ba114cc58f81d421bb3558fd
    149 Nca1967c924ae46a3b475e30d3d4b5e31 rdf:first sg:person.012211127737.02
    150 rdf:rest Nd6e3b0812da7445aaa0efc6e7c13363b
    151 Ncb944caef3f941f2b91f913d14dd1871 schema:name doi
    152 schema:value 10.1007/s40195-022-01389-4
    153 rdf:type schema:PropertyValue
    154 Nd6e3b0812da7445aaa0efc6e7c13363b rdf:first sg:person.01110307756.49
    155 rdf:rest rdf:nil
    156 Ndb5f8232507f43bda9209cbabc41d876 rdf:first Ne7ca44b5b11e4e31b9cf687c13badbcd
    157 rdf:rest N87a91bc175484a6e88344b2dbc25c56e
    158 Ne7ca44b5b11e4e31b9cf687c13badbcd schema:affiliation grid-institutes:grid.464309.c
    159 schema:familyName Li
    160 schema:givenName Ke-Feng
    161 rdf:type schema:Person
    162 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Engineering
    164 rdf:type schema:DefinedTerm
    165 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Materials Engineering
    167 rdf:type schema:DefinedTerm
    168 sg:grant.8931280 http://pending.schema.org/fundedItem sg:pub.10.1007/s40195-022-01389-4
    169 rdf:type schema:MonetaryGrant
    170 sg:grant.8937834 http://pending.schema.org/fundedItem sg:pub.10.1007/s40195-022-01389-4
    171 rdf:type schema:MonetaryGrant
    172 sg:journal.1381337 schema:issn 0412-1961
    173 1006-7191
    174 schema:name Acta Metallurgica Sinica (English Letters)
    175 schema:publisher Springer Nature
    176 rdf:type schema:Periodical
    177 sg:person.01110307756.49 schema:affiliation grid-institutes:grid.27255.37
    178 schema:familyName Hu
    179 schema:givenName Li-Na
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110307756.49
    181 rdf:type schema:Person
    182 sg:person.011107533256.93 schema:affiliation grid-institutes:grid.27255.37
    183 schema:familyName Sun
    184 schema:givenName Tong-Tong
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011107533256.93
    186 rdf:type schema:Person
    187 sg:person.012211127737.02 schema:affiliation grid-institutes:grid.27255.37
    188 schema:familyName Gong
    189 schema:givenName Jian-Hong
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012211127737.02
    191 rdf:type schema:Person
    192 sg:person.013460560503.59 schema:affiliation grid-institutes:grid.27255.37
    193 schema:familyName Zhao
    194 schema:givenName Kang
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013460560503.59
    196 rdf:type schema:Person
    197 sg:person.013557467623.55 schema:affiliation grid-institutes:grid.43555.32
    198 schema:familyName Song
    199 schema:givenName Wei-Dong
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013557467623.55
    201 rdf:type schema:Person
    202 sg:person.015065410116.21 schema:affiliation grid-institutes:grid.27255.37
    203 schema:familyName Song
    204 schema:givenName Kai-Kai
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015065410116.21
    206 rdf:type schema:Person
    207 sg:pub.10.1007/s11661-015-2882-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017243202
    208 https://doi.org/10.1007/s11661-015-2882-8
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s11661-017-4140-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085559963
    211 https://doi.org/10.1007/s11661-017-4140-8
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s11837-013-0771-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023337230
    214 https://doi.org/10.1007/s11837-013-0771-4
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s11837-016-1888-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1008144849
    217 https://doi.org/10.1007/s11837-016-1888-z
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s40195-012-0174-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024319795
    220 https://doi.org/10.1007/s40195-012-0174-5
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/s40195-019-00921-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115216164
    223 https://doi.org/10.1007/s40195-019-00921-3
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/s40195-019-00945-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121655709
    226 https://doi.org/10.1007/s40195-019-00945-9
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s40195-019-00962-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122285643
    229 https://doi.org/10.1007/s40195-019-00962-8
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/s40195-020-00998-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124151416
    232 https://doi.org/10.1007/s40195-020-00998-1
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/s40195-020-01002-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124077570
    235 https://doi.org/10.1007/s40195-020-01002-6
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/s40195-020-01037-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126497523
    238 https://doi.org/10.1007/s40195-020-01037-9
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/s40195-020-01045-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126593932
    241 https://doi.org/10.1007/s40195-020-01045-9
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/s40195-020-01072-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128196996
    244 https://doi.org/10.1007/s40195-020-01072-6
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1007/s40195-020-01128-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130615121
    247 https://doi.org/10.1007/s40195-020-01128-7
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/s40195-020-01156-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132293125
    250 https://doi.org/10.1007/s40195-020-01156-3
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1007/s40195-021-01196-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135072581
    253 https://doi.org/10.1007/s40195-021-01196-3
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1007/s40195-021-01249-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138277629
    256 https://doi.org/10.1007/s40195-021-01249-7
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1007/s42401-018-0006-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1109793682
    259 https://doi.org/10.1007/s42401-018-0006-z
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/nature08929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041097751
    262 https://doi.org/10.1038/nature08929
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/nature17981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045635826
    265 https://doi.org/10.1038/nature17981
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/s41467-018-06600-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107275377
    268 https://doi.org/10.1038/s41467-018-06600-8
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1038/s41467-019-08460-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111778162
    271 https://doi.org/10.1038/s41467-019-08460-2
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1038/s41467-020-14641-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124793337
    274 https://doi.org/10.1038/s41467-020-14641-1
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1557/jmr.2008.0354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045955805
    277 https://doi.org/10.1557/jmr.2008.0354
    278 rdf:type schema:CreativeWork
    279 grid-institutes:grid.27255.37 schema:alternateName Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 250061, Jinan, China
    280 School of Mechanical, Electrical and Information Engineering, Shandong University, 264209, Weihai, China
    281 Shenzhen Research Institute of Shandong University, 518057, Shenzhen, China
    282 schema:name Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 250061, Jinan, China
    283 School of Mechanical, Electrical and Information Engineering, Shandong University, 264209, Weihai, China
    284 Shenzhen Research Institute of Shandong University, 518057, Shenzhen, China
    285 State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 100081, Beijing, China
    286 rdf:type schema:Organization
    287 grid-institutes:grid.43555.32 schema:alternateName State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 100081, Beijing, China
    288 schema:name State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 100081, Beijing, China
    289 rdf:type schema:Organization
    290 grid-institutes:grid.464309.c schema:alternateName Guangdong Institute of Materials and Processing, Guangdong Academy of Sciences, Guangdong University, 510650, Guangzhou, China
    291 schema:name Guangdong Institute of Materials and Processing, Guangdong Academy of Sciences, Guangdong University, 510650, Guangzhou, China
    292 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...