Strain-based critical plane approach to predict the fatigue life of high frequency mechanical impact (HFMI)-treated welded joints depending on the ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-11

AUTHORS

Jan Schubnell, Volker Hardenacke, Majid Farajian

ABSTRACT

After post-treatment with high frequency impact treatment (HFMI) of weld toes, a significant increase of fatigue strength or fatigue life can be achieved. Due to the lack of methods for the quantitative prediction of the HFMI benefits depending on the process and treated material, a widespread use of this process has not yet happened. One reason for that issue is that at the moment, no methods exist to predict the influence of the HFMI-treatment on welded components and structures at the moment in advance depending on the HFMI-treatment parameters. For this case, a strain-based approach based on the finite element (FE) simulation of the HFMI-process and the subsequent evaluation by critical plane approaches of the FE-post-processing was developed. This approach principally considers the beneficial effects of compressive residual stresses, notch effect reduction, and hardening of the HFMI-treated surface layer. Furthermore, residual stress relaxation during fatigue loading was taken into account. For numerical prediction of the influence of HFMI-treatment of welds, process parameters at the real device were measured and a suitable material hardening model was used from previous work to describe the conditions in the surface layer. After this, the process chain of welding, HFMI-treatment, and fatigue loading of butt joint specimen were simulated. The estimated fatigue life values were compared with the values of the fatigue tests for two different treatment intensities and also a good agreement was reached. More... »

PAGES

1199-1210

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40194-017-0505-2

DOI

http://dx.doi.org/10.1007/s40194-017-0505-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091377252


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Mechanics of Materials", 
          "id": "https://www.grid.ac/institutes/grid.461645.4", 
          "name": [
            "Fraunhofer Institute for Mechanics of Materials IWM, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schubnell", 
        "givenName": "Jan", 
        "id": "sg:person.014247341571.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014247341571.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Mechanics of Materials", 
          "id": "https://www.grid.ac/institutes/grid.461645.4", 
          "name": [
            "Fraunhofer Institute for Mechanics of Materials IWM, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hardenacke", 
        "givenName": "Volker", 
        "id": "sg:person.012746214273.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012746214273.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Mechanics of Materials", 
          "id": "https://www.grid.ac/institutes/grid.461645.4", 
          "name": [
            "Fraunhofer Institute for Mechanics of Materials IWM, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Farajian", 
        "givenName": "Majid", 
        "id": "sg:person.012375572445.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012375572445.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.matdes.2015.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000064590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mspro.2014.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002557312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfatigue.2013.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004878237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40194-013-0097-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007183255", 
          "https://doi.org/10.1007/s40194-013-0097-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02667333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015516438", 
          "https://doi.org/10.1007/bf02667333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-1123(00)00026-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019260266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1460-2695.1988.tb01169.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022982282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1460-2695.1988.tb01169.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022982282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfatigue.2013.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029405550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1460-2695.2009.01369.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030674244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1460-2695.2009.01369.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030674244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfatigue.2012.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032421184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40194-013-0075-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033195355", 
          "https://doi.org/10.1007/s40194-013-0075-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2015.02.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035322965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.996.761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039161730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfatigue.2016.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039285605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/srin.200606478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041568944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40194-014-0210-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042444824", 
          "https://doi.org/10.1007/s40194-014-0210-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfatigue.2004.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044640195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfatigue.2013.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044819903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40194-016-0338-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045298535", 
          "https://doi.org/10.1007/s40194-016-0338-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40194-013-0077-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045911073", 
          "https://doi.org/10.1007/s40194-013-0077-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2014.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046090062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0261-3069(03)00157-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046310711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2011.10.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046818792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2011.04.322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049251752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2015.04.128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049517681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2900990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062092317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1520/stp33393s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088494209"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "After post-treatment with high frequency impact treatment (HFMI) of weld toes, a significant increase of fatigue strength or fatigue life can be achieved. Due to the lack of methods for the quantitative prediction of the HFMI benefits depending on the process and treated material, a widespread use of this process has not yet happened. One reason for that issue is that at the moment, no methods exist to predict the influence of the HFMI-treatment on welded components and structures at the moment in advance depending on the HFMI-treatment parameters. For this case, a strain-based approach based on the finite element (FE) simulation of the HFMI-process and the subsequent evaluation by critical plane approaches of the FE-post-processing was developed. This approach principally considers the beneficial effects of compressive residual stresses, notch effect reduction, and hardening of the HFMI-treated surface layer. Furthermore, residual stress relaxation during fatigue loading was taken into account. For numerical prediction of the influence of HFMI-treatment of welds, process parameters at the real device were measured and a suitable material hardening model was used from previous work to describe the conditions in the surface layer. After this, the process chain of welding, HFMI-treatment, and fatigue loading of butt joint specimen were simulated. The estimated fatigue life values were compared with the values of the fatigue tests for two different treatment intensities and also a good agreement was reached.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40194-017-0505-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136492", 
        "issn": [
          "0043-2288", 
          "1878-6669"
        ], 
        "name": "Welding in the World", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "name": "Strain-based critical plane approach to predict the fatigue life of high frequency mechanical impact (HFMI)-treated welded joints depending on the material condition", 
    "pagination": "1199-1210", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2c7ebc18367c8d4c345da6d488113e775e48ec6a2d847888e9d8d6c79c7f83f8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40194-017-0505-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091377252"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40194-017-0505-2", 
      "https://app.dimensions.ai/details/publication/pub.1091377252"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000484.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s40194-017-0505-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40194-017-0505-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40194-017-0505-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40194-017-0505-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40194-017-0505-2'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40194-017-0505-2 schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author Ne19652178d9b4a99ae3523ffe2752e52
4 schema:citation sg:pub.10.1007/bf02667333
5 sg:pub.10.1007/s40194-013-0075-x
6 sg:pub.10.1007/s40194-013-0077-8
7 sg:pub.10.1007/s40194-013-0097-4
8 sg:pub.10.1007/s40194-014-0210-3
9 sg:pub.10.1007/s40194-016-0338-4
10 https://doi.org/10.1002/srin.200606478
11 https://doi.org/10.1016/j.apsusc.2015.04.128
12 https://doi.org/10.1016/j.commatsci.2011.10.026
13 https://doi.org/10.1016/j.ijfatigue.2004.08.001
14 https://doi.org/10.1016/j.ijfatigue.2012.05.002
15 https://doi.org/10.1016/j.ijfatigue.2013.02.014
16 https://doi.org/10.1016/j.ijfatigue.2013.03.006
17 https://doi.org/10.1016/j.ijfatigue.2013.06.023
18 https://doi.org/10.1016/j.ijfatigue.2016.09.009
19 https://doi.org/10.1016/j.matdes.2014.02.001
20 https://doi.org/10.1016/j.matdes.2015.10.001
21 https://doi.org/10.1016/j.mspro.2014.06.015
22 https://doi.org/10.1016/j.proeng.2011.04.322
23 https://doi.org/10.1016/j.proeng.2015.02.036
24 https://doi.org/10.1016/s0142-1123(00)00026-8
25 https://doi.org/10.1016/s0261-3069(03)00157-2
26 https://doi.org/10.1111/j.1460-2695.1988.tb01169.x
27 https://doi.org/10.1111/j.1460-2695.2009.01369.x
28 https://doi.org/10.1115/1.2900990
29 https://doi.org/10.1520/stp33393s
30 https://doi.org/10.4028/www.scientific.net/amr.996.761
31 schema:datePublished 2017-11
32 schema:datePublishedReg 2017-11-01
33 schema:description After post-treatment with high frequency impact treatment (HFMI) of weld toes, a significant increase of fatigue strength or fatigue life can be achieved. Due to the lack of methods for the quantitative prediction of the HFMI benefits depending on the process and treated material, a widespread use of this process has not yet happened. One reason for that issue is that at the moment, no methods exist to predict the influence of the HFMI-treatment on welded components and structures at the moment in advance depending on the HFMI-treatment parameters. For this case, a strain-based approach based on the finite element (FE) simulation of the HFMI-process and the subsequent evaluation by critical plane approaches of the FE-post-processing was developed. This approach principally considers the beneficial effects of compressive residual stresses, notch effect reduction, and hardening of the HFMI-treated surface layer. Furthermore, residual stress relaxation during fatigue loading was taken into account. For numerical prediction of the influence of HFMI-treatment of welds, process parameters at the real device were measured and a suitable material hardening model was used from previous work to describe the conditions in the surface layer. After this, the process chain of welding, HFMI-treatment, and fatigue loading of butt joint specimen were simulated. The estimated fatigue life values were compared with the values of the fatigue tests for two different treatment intensities and also a good agreement was reached.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N53745e453f9b4652933550026a7f791a
38 Nf26b8518d73c460c86f8859d76258ece
39 sg:journal.1136492
40 schema:name Strain-based critical plane approach to predict the fatigue life of high frequency mechanical impact (HFMI)-treated welded joints depending on the material condition
41 schema:pagination 1199-1210
42 schema:productId N45e8b100db54402396523f4e1fb9a4d0
43 N757dbb0036be4da59700ca3e137ac55a
44 N83ae95ec501145a9acb442271c1821d4
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091377252
46 https://doi.org/10.1007/s40194-017-0505-2
47 schema:sdDatePublished 2019-04-10T22:25
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nff25209a625c469899753e9955885e21
50 schema:url http://link.springer.com/10.1007/s40194-017-0505-2
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N45e8b100db54402396523f4e1fb9a4d0 schema:name readcube_id
55 schema:value 2c7ebc18367c8d4c345da6d488113e775e48ec6a2d847888e9d8d6c79c7f83f8
56 rdf:type schema:PropertyValue
57 N53745e453f9b4652933550026a7f791a schema:issueNumber 6
58 rdf:type schema:PublicationIssue
59 N757dbb0036be4da59700ca3e137ac55a schema:name dimensions_id
60 schema:value pub.1091377252
61 rdf:type schema:PropertyValue
62 N83ae95ec501145a9acb442271c1821d4 schema:name doi
63 schema:value 10.1007/s40194-017-0505-2
64 rdf:type schema:PropertyValue
65 N86d07115a74847e5ada7746cdeff5564 rdf:first sg:person.012375572445.31
66 rdf:rest rdf:nil
67 Ndd491426b3614a25823ca9d19f2e6f9c rdf:first sg:person.012746214273.28
68 rdf:rest N86d07115a74847e5ada7746cdeff5564
69 Ne19652178d9b4a99ae3523ffe2752e52 rdf:first sg:person.014247341571.33
70 rdf:rest Ndd491426b3614a25823ca9d19f2e6f9c
71 Nf26b8518d73c460c86f8859d76258ece schema:volumeNumber 61
72 rdf:type schema:PublicationVolume
73 Nff25209a625c469899753e9955885e21 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
76 schema:name Engineering
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
79 schema:name Biomedical Engineering
80 rdf:type schema:DefinedTerm
81 sg:journal.1136492 schema:issn 0043-2288
82 1878-6669
83 schema:name Welding in the World
84 rdf:type schema:Periodical
85 sg:person.012375572445.31 schema:affiliation https://www.grid.ac/institutes/grid.461645.4
86 schema:familyName Farajian
87 schema:givenName Majid
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012375572445.31
89 rdf:type schema:Person
90 sg:person.012746214273.28 schema:affiliation https://www.grid.ac/institutes/grid.461645.4
91 schema:familyName Hardenacke
92 schema:givenName Volker
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012746214273.28
94 rdf:type schema:Person
95 sg:person.014247341571.33 schema:affiliation https://www.grid.ac/institutes/grid.461645.4
96 schema:familyName Schubnell
97 schema:givenName Jan
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014247341571.33
99 rdf:type schema:Person
100 sg:pub.10.1007/bf02667333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015516438
101 https://doi.org/10.1007/bf02667333
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s40194-013-0075-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033195355
104 https://doi.org/10.1007/s40194-013-0075-x
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s40194-013-0077-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045911073
107 https://doi.org/10.1007/s40194-013-0077-8
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s40194-013-0097-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007183255
110 https://doi.org/10.1007/s40194-013-0097-4
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s40194-014-0210-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042444824
113 https://doi.org/10.1007/s40194-014-0210-3
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s40194-016-0338-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045298535
116 https://doi.org/10.1007/s40194-016-0338-4
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/srin.200606478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041568944
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.apsusc.2015.04.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049517681
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.commatsci.2011.10.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046818792
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.ijfatigue.2004.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044640195
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.ijfatigue.2012.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032421184
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.ijfatigue.2013.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044819903
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.ijfatigue.2013.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004878237
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.ijfatigue.2013.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029405550
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.ijfatigue.2016.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039285605
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.matdes.2014.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046090062
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.matdes.2015.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000064590
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.mspro.2014.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002557312
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.proeng.2011.04.322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049251752
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.proeng.2015.02.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035322965
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s0142-1123(00)00026-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019260266
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0261-3069(03)00157-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046310711
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1111/j.1460-2695.1988.tb01169.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022982282
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1111/j.1460-2695.2009.01369.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030674244
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1115/1.2900990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062092317
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1520/stp33393s schema:sameAs https://app.dimensions.ai/details/publication/pub.1088494209
157 rdf:type schema:CreativeWork
158 https://doi.org/10.4028/www.scientific.net/amr.996.761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039161730
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.461645.4 schema:alternateName Fraunhofer Institute for Mechanics of Materials
161 schema:name Fraunhofer Institute for Mechanics of Materials IWM, Freiburg, Germany
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...