A Comparative Study of the Efficacy of Local/Global and Parametric/Nonparametric Machine Learning Methods for Establishing Structure–Property Linkages in High-Contrast 3D ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-28

AUTHORS

Patxi Fernandez-Zelaia, Yuksel C. Yabansu, Surya R. Kalidindi

ABSTRACT

Reduced-order structure–property (S-P) linkages play a pivotal role in the tailored design of materials for advanced engineering components. There is a critical need to distill these from the simulation datasets aggregated using sophisticated, computationally expensive, physics-based numerical tools (e.g., finite element methods). The recent emergence of materials data science approaches has opened new avenues for addressing this challenge. In this paper, we critically compare the relative merits of the application of four distinct machine learning approaches for their efficacy in extracting microstructure-property linkages from the finite element simulation data aggregated on high-contrast elastic composites with different microstructures. The machine learning approaches selected for the study have included different combinations of local/global and parametric/nonparametric approaches. Furthermore, the nonparametric approaches selected for this study are based on Gaussian Process (GP) models that allow for a formal treatment of uncertainty quantification in the predicted values. The predictive performances of these different approaches have been compared against each other using rigorous cross-validation error metrics. Furthermore, their sensitivity to both the dataset size and dimensionality has been investigated. More... »

PAGES

1-15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40192-019-00129-4

DOI

http://dx.doi.org/10.1007/s40192-019-00129-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113053045


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave, 30332, Atlanta, GA, USA", 
            "Oak Ridge National Laboratory, 37931, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fernandez-Zelaia", 
        "givenName": "Patxi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave, 30332, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yabansu", 
        "givenName": "Yuksel C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave, 30332, Atlanta, GA, USA", 
            "School of Computational Science and Engineering, Georgia Institute of Technology, North Ave, 30332, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalidindi", 
        "givenName": "Surya R.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11666-016-0480-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000670766", 
          "https://doi.org/10.1007/s11666-016-0480-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11666-016-0480-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000670766", 
          "https://doi.org/10.1007/s11666-016-0480-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2008.00663.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000712505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2015.04.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001659198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2015.04.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001659198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2015.04.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001659198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2015.04.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001659198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2008.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001947532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2012.10.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007682772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2016.05.141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013151702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesb.2012.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013277735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2015.02.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015211689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmps.2005.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017693379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesb.2008.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018106978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.10.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018435441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-999-0005-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018917335", 
          "https://doi.org/10.1007/s11837-999-0005-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(00)00126-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020464951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2007.10.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025508940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmps.2008.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031743827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.18239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032252773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2009.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033045094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2010.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035880563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cad.2012.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041898975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781119148739.ch4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047586328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/09-aoas285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050832432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2193-9772-2-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051353116", 
          "https://doi.org/10.1186/2193-9772-2-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmps.2008.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053557788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1619573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057726522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.2013.842935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058288155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1979.10481038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058302085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1988.10478639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10618600.2014.914442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058368943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0965-0393/24/7/075002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059121746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.277.5330.1237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062557816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/004017006000000011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214508000000689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/12-aoas570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064392906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177012413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064409909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/mrs.2016.61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067967443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v072.i01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068673095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2113/gsecongeo.58.8.1246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068929315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40192-017-0089-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084038375", 
          "https://doi.org/10.1007/s40192-017-0089-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40192-017-0093-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084038379", 
          "https://doi.org/10.1007/s40192-017-0093-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40192-017-0093-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084038379", 
          "https://doi.org/10.1007/s40192-017-0093-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084055680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084055680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084055680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijsolstr.2017.04.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085122060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085576107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085576107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085576107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2017.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085961427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2017.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086024729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/15m1008774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090697229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijengsci.2017.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091861750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091911480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.11.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092714607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/detc2017-67570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092973416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdar.1995.598994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094404483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/ccol0521382483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098723018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.11.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099908795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2018.03.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101551479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2018.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101554196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10618600.2018.1458625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103464332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2018.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104229666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2018.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104229666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2018.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104229666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2018.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104229666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2018.07.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105703142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijplas.2018.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105831303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2018.07.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105856801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aat2663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105862485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2018.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107163372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109699167", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109699167", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470168707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109699167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2018.11.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110128236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2018.11.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110196535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2018.11.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110196535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2018.11.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110196535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1996.tb02080.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1996.tb02080.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2018.12.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111012250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2018.12.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111012250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2018.12.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111012250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2018.12.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111012250"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-28", 
    "datePublishedReg": "2019-03-28", 
    "description": "Reduced-order structure\u2013property (S-P) linkages play a pivotal role in the tailored design of materials for advanced engineering components. There is a critical need to distill these from the simulation datasets aggregated using sophisticated, computationally expensive, physics-based numerical tools (e.g., finite element methods). The recent emergence of materials data science approaches has opened new avenues for addressing this challenge. In this paper, we critically compare the relative merits of the application of four distinct machine learning approaches for their efficacy in extracting microstructure-property linkages from the finite element simulation data aggregated on high-contrast elastic composites with different microstructures. The machine learning approaches selected for the study have included different combinations of local/global and parametric/nonparametric approaches. Furthermore, the nonparametric approaches selected for this study are based on Gaussian Process (GP) models that allow for a formal treatment of uncertainty quantification in the predicted values. The predictive performances of these different approaches have been compared against each other using rigorous cross-validation error metrics. Furthermore, their sensitivity to both the dataset size and dimensionality has been investigated.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40192-019-00129-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7569482", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136615", 
        "issn": [
          "2193-9764", 
          "2193-9772"
        ], 
        "name": "Integrating Materials and Manufacturing Innovation", 
        "type": "Periodical"
      }
    ], 
    "name": "A Comparative Study of the Efficacy of Local/Global and Parametric/Nonparametric Machine Learning Methods for Establishing Structure\u2013Property Linkages in High-Contrast 3D Elastic Composites", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4a5746044c314691dc75d53886b798fe7c743cb5c901eb2065af58ff1733bbf9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40192-019-00129-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113053045"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40192-019-00129-4", 
      "https://app.dimensions.ai/details/publication/pub.1113053045"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78974_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40192-019-00129-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40192-019-00129-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40192-019-00129-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40192-019-00129-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40192-019-00129-4'


 

This table displays all metadata directly associated to this object as RDF triples.

282 TRIPLES      21 PREDICATES      92 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40192-019-00129-4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndb824d2847684ef2a58f441e289adb84
4 schema:citation sg:pub.10.1007/s11666-016-0480-y
5 sg:pub.10.1007/s11837-999-0005-y
6 sg:pub.10.1007/s40192-017-0089-0
7 sg:pub.10.1007/s40192-017-0093-4
8 sg:pub.10.1023/a:1010933404324
9 sg:pub.10.1186/2193-9772-2-3
10 https://app.dimensions.ai/details/publication/pub.1109699167
11 https://doi.org/10.1002/9780470168707
12 https://doi.org/10.1002/9781119148739.ch4
13 https://doi.org/10.1016/j.actamat.2007.10.044
14 https://doi.org/10.1016/j.actamat.2008.07.005
15 https://doi.org/10.1016/j.actamat.2010.01.007
16 https://doi.org/10.1016/j.actamat.2015.02.045
17 https://doi.org/10.1016/j.actamat.2015.04.049
18 https://doi.org/10.1016/j.actamat.2016.10.071
19 https://doi.org/10.1016/j.actamat.2017.03.009
20 https://doi.org/10.1016/j.actamat.2017.05.009
21 https://doi.org/10.1016/j.actamat.2017.09.004
22 https://doi.org/10.1016/j.actamat.2017.11.024
23 https://doi.org/10.1016/j.actamat.2017.11.053
24 https://doi.org/10.1016/j.actamat.2018.07.034
25 https://doi.org/10.1016/j.actamat.2018.07.056
26 https://doi.org/10.1016/j.actamat.2018.11.047
27 https://doi.org/10.1016/j.actamat.2018.12.045
28 https://doi.org/10.1016/j.cad.2012.06.006
29 https://doi.org/10.1016/j.commatsci.2018.03.005
30 https://doi.org/10.1016/j.commatsci.2018.05.014
31 https://doi.org/10.1016/j.compositesb.2008.01.002
32 https://doi.org/10.1016/j.compositesb.2012.05.015
33 https://doi.org/10.1016/j.conbuildmat.2016.05.141
34 https://doi.org/10.1016/j.ijengsci.2017.08.009
35 https://doi.org/10.1016/j.ijmachtools.2018.09.004
36 https://doi.org/10.1016/j.ijplas.2018.07.013
37 https://doi.org/10.1016/j.ijsolstr.2017.04.037
38 https://doi.org/10.1016/j.jcp.2017.06.013
39 https://doi.org/10.1016/j.jmps.2005.02.009
40 https://doi.org/10.1016/j.jmps.2008.01.003
41 https://doi.org/10.1016/j.jmps.2008.10.001
42 https://doi.org/10.1016/j.jpowsour.2012.10.060
43 https://doi.org/10.1016/j.matdes.2018.03.037
44 https://doi.org/10.1016/j.memsci.2017.06.020
45 https://doi.org/10.1016/j.msea.2018.11.106
46 https://doi.org/10.1016/j.pmatsci.2009.08.002
47 https://doi.org/10.1016/s0304-8853(00)00126-8
48 https://doi.org/10.1017/ccol0521382483
49 https://doi.org/10.1063/1.1619573
50 https://doi.org/10.1080/00401706.2013.842935
51 https://doi.org/10.1080/01621459.1979.10481038
52 https://doi.org/10.1080/01621459.1988.10478639
53 https://doi.org/10.1080/10618600.2014.914442
54 https://doi.org/10.1080/10618600.2018.1458625
55 https://doi.org/10.1088/0965-0393/24/7/075002
56 https://doi.org/10.1109/icdar.1995.598994
57 https://doi.org/10.1111/j.1467-9868.2008.00663.x
58 https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
59 https://doi.org/10.1115/detc2017-67570
60 https://doi.org/10.1126/science.277.5330.1237
61 https://doi.org/10.1126/science.aat2663
62 https://doi.org/10.1137/15m1008774
63 https://doi.org/10.1198/004017006000000011
64 https://doi.org/10.1198/016214508000000689
65 https://doi.org/10.1214/09-aoas285
66 https://doi.org/10.1214/12-aoas570
67 https://doi.org/10.1214/ss/1177012413
68 https://doi.org/10.1557/mrs.2016.61
69 https://doi.org/10.18637/jss.v072.i01
70 https://doi.org/10.2113/gsecongeo.58.8.1246
71 https://doi.org/10.2514/1.18239
72 schema:datePublished 2019-03-28
73 schema:datePublishedReg 2019-03-28
74 schema:description Reduced-order structure–property (S-P) linkages play a pivotal role in the tailored design of materials for advanced engineering components. There is a critical need to distill these from the simulation datasets aggregated using sophisticated, computationally expensive, physics-based numerical tools (e.g., finite element methods). The recent emergence of materials data science approaches has opened new avenues for addressing this challenge. In this paper, we critically compare the relative merits of the application of four distinct machine learning approaches for their efficacy in extracting microstructure-property linkages from the finite element simulation data aggregated on high-contrast elastic composites with different microstructures. The machine learning approaches selected for the study have included different combinations of local/global and parametric/nonparametric approaches. Furthermore, the nonparametric approaches selected for this study are based on Gaussian Process (GP) models that allow for a formal treatment of uncertainty quantification in the predicted values. The predictive performances of these different approaches have been compared against each other using rigorous cross-validation error metrics. Furthermore, their sensitivity to both the dataset size and dimensionality has been investigated.
75 schema:genre research_article
76 schema:inLanguage en
77 schema:isAccessibleForFree false
78 schema:isPartOf sg:journal.1136615
79 schema:name A Comparative Study of the Efficacy of Local/Global and Parametric/Nonparametric Machine Learning Methods for Establishing Structure–Property Linkages in High-Contrast 3D Elastic Composites
80 schema:pagination 1-15
81 schema:productId N11d374690bcc4c1d8b9a0c06589acea2
82 N6488d49fa86841abacd38f2074c956cb
83 Nd00b2d4bb36e410d9ab1d9a6c2a1f50f
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113053045
85 https://doi.org/10.1007/s40192-019-00129-4
86 schema:sdDatePublished 2019-04-11T13:21
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher Nb193b03b8bc84642a07c60e1a7dce4c0
89 schema:url https://link.springer.com/10.1007%2Fs40192-019-00129-4
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N11d374690bcc4c1d8b9a0c06589acea2 schema:name doi
94 schema:value 10.1007/s40192-019-00129-4
95 rdf:type schema:PropertyValue
96 N2085594cf21841029bf529940608ef17 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
97 schema:familyName Kalidindi
98 schema:givenName Surya R.
99 rdf:type schema:Person
100 N28d980af003e480eb7d119399506638d rdf:first N2085594cf21841029bf529940608ef17
101 rdf:rest rdf:nil
102 N6488d49fa86841abacd38f2074c956cb schema:name dimensions_id
103 schema:value pub.1113053045
104 rdf:type schema:PropertyValue
105 N783b0f3d61a0436c8317408cc50f32c5 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
106 schema:familyName Yabansu
107 schema:givenName Yuksel C.
108 rdf:type schema:Person
109 Nb193b03b8bc84642a07c60e1a7dce4c0 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Nbf8a8d05d18542839efc642b35413e37 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
112 schema:familyName Fernandez-Zelaia
113 schema:givenName Patxi
114 rdf:type schema:Person
115 Nd00b2d4bb36e410d9ab1d9a6c2a1f50f schema:name readcube_id
116 schema:value 4a5746044c314691dc75d53886b798fe7c743cb5c901eb2065af58ff1733bbf9
117 rdf:type schema:PropertyValue
118 Ndb824d2847684ef2a58f441e289adb84 rdf:first Nbf8a8d05d18542839efc642b35413e37
119 rdf:rest Nf51b5fb7851b4764ab6f5ff7245ee8ea
120 Nf51b5fb7851b4764ab6f5ff7245ee8ea rdf:first N783b0f3d61a0436c8317408cc50f32c5
121 rdf:rest N28d980af003e480eb7d119399506638d
122 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
123 schema:name Information and Computing Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
126 schema:name Artificial Intelligence and Image Processing
127 rdf:type schema:DefinedTerm
128 sg:grant.7569482 http://pending.schema.org/fundedItem sg:pub.10.1007/s40192-019-00129-4
129 rdf:type schema:MonetaryGrant
130 sg:journal.1136615 schema:issn 2193-9764
131 2193-9772
132 schema:name Integrating Materials and Manufacturing Innovation
133 rdf:type schema:Periodical
134 sg:pub.10.1007/s11666-016-0480-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1000670766
135 https://doi.org/10.1007/s11666-016-0480-y
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11837-999-0005-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1018917335
138 https://doi.org/10.1007/s11837-999-0005-y
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s40192-017-0089-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084038375
141 https://doi.org/10.1007/s40192-017-0089-0
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s40192-017-0093-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084038379
144 https://doi.org/10.1007/s40192-017-0093-4
145 rdf:type schema:CreativeWork
146 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
147 https://doi.org/10.1023/a:1010933404324
148 rdf:type schema:CreativeWork
149 sg:pub.10.1186/2193-9772-2-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051353116
150 https://doi.org/10.1186/2193-9772-2-3
151 rdf:type schema:CreativeWork
152 https://app.dimensions.ai/details/publication/pub.1109699167 schema:CreativeWork
153 https://doi.org/10.1002/9780470168707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109699167
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/9781119148739.ch4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047586328
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.actamat.2007.10.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025508940
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.actamat.2008.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001947532
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.actamat.2010.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035880563
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.actamat.2015.02.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015211689
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.actamat.2015.04.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001659198
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.actamat.2016.10.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018435441
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.actamat.2017.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084055680
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.actamat.2017.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085576107
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.actamat.2017.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091911480
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.actamat.2017.11.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092714607
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.actamat.2017.11.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099908795
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.actamat.2018.07.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105703142
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.actamat.2018.07.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105856801
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.actamat.2018.11.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110196535
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.actamat.2018.12.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111012250
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.cad.2012.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041898975
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.commatsci.2018.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101554196
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.commatsci.2018.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104229666
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.compositesb.2008.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018106978
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.compositesb.2012.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013277735
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.conbuildmat.2016.05.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013151702
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.ijengsci.2017.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091861750
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.ijmachtools.2018.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107163372
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.ijplas.2018.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105831303
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.ijsolstr.2017.04.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085122060
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.jcp.2017.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086024729
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.jmps.2005.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017693379
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.jmps.2008.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031743827
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.jmps.2008.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053557788
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.jpowsour.2012.10.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007682772
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.matdes.2018.03.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101551479
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.memsci.2017.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085961427
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.msea.2018.11.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110128236
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.pmatsci.2009.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033045094
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/s0304-8853(00)00126-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020464951
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1017/ccol0521382483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098723018
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1063/1.1619573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057726522
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1080/00401706.2013.842935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058288155
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1080/01621459.1979.10481038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058302085
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1080/01621459.1988.10478639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303616
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1080/10618600.2014.914442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058368943
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1080/10618600.2018.1458625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103464332
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1088/0965-0393/24/7/075002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059121746
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1109/icdar.1995.598994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094404483
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1111/j.1467-9868.2008.00663.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000712505
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1111/j.2517-6161.1996.tb02080.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458978
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1115/detc2017-67570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092973416
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1126/science.277.5330.1237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062557816
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1126/science.aat2663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105862485
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1137/15m1008774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090697229
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1198/004017006000000011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197660
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1198/016214508000000689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198827
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1214/09-aoas285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050832432
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1214/12-aoas570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064392906
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1214/ss/1177012413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409909
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1557/mrs.2016.61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067967443
268 rdf:type schema:CreativeWork
269 https://doi.org/10.18637/jss.v072.i01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068673095
270 rdf:type schema:CreativeWork
271 https://doi.org/10.2113/gsecongeo.58.8.1246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068929315
272 rdf:type schema:CreativeWork
273 https://doi.org/10.2514/1.18239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032252773
274 rdf:type schema:CreativeWork
275 https://www.grid.ac/institutes/grid.135519.a schema:alternateName Oak Ridge National Laboratory
276 schema:name George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave, 30332, Atlanta, GA, USA
277 Oak Ridge National Laboratory, 37931, Oak Ridge, TN, USA
278 rdf:type schema:Organization
279 https://www.grid.ac/institutes/grid.213917.f schema:alternateName Georgia Institute of Technology
280 schema:name George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave, 30332, Atlanta, GA, USA
281 School of Computational Science and Engineering, Georgia Institute of Technology, North Ave, 30332, Atlanta, GA, USA
282 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...