Computational Design of Functionally Graded Materials from Sintered Powders View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-04

AUTHORS

Tesfaye T. Molla, J. Z. Liu, G. B. Schaffer

ABSTRACT

A new computational method is presented for the efficient design of alloy systems in functionally graded materials (FGMs), optimized for manufacturability (sintering) as well as performance. The design methodology uses a multi-objective genetic algorithm (GA) integrated with computational thermodynamics and physics-based predictive models to optimize the composition of each alloy in the FGM. Thermodynamic modeling, using the CALPHAD method, is used to establish microstructural constraints and calculate the effective diffusivity in each alloy of the FGM. Physics-based predictive models are used to estimate performance properties. The model is verified by comparing results with data from the literature. A design exercise is also presented for an FGM that combines a ferritic and an austenitic stainless steel to demonstrate the capability of the methodology. It is shown that the mismatch in sintering rate between the two alloys, which causes processing defects during co-sintering, can be minimized while the solution hardening and corrosion resistance in the austenitic alloy can be optimized by independently controlling the composition of both alloys, the initial particle sizes and the sintering temperature. More... »

PAGES

1-13

References to SciGraph publications

  • 2018-09. An ICME Framework for Design of Stainless Steel for Sintering in INTEGRATING MATERIALS AND MANUFACTURING INNOVATION
  • 2017-12. Effect of weld line positions on the tensile deformation of two-component metal injection moulding in INTERNATIONAL JOURNAL OF MINERALS, METALLURGY, AND MATERIALS
  • 2016-08. Alloy design for aircraft engines in NATURE MATERIALS
  • 2003-10. Design guidelines for processing bi-material components via powder-injection molding in JOM
  • 2003-12. Defect-free sintering of two material powder injection molded components Part I Experimental investigations in JOURNAL OF MATERIALS SCIENCE
  • 2017-09. A Computational Framework for Material Design in INTEGRATING MATERIALS AND MANUFACTURING INNOVATION
  • 2007-05. Manufacturing of multi-functional micro parts by two-component metal injection moulding in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40192-019-00127-6

    DOI

    http://dx.doi.org/10.1007/s40192-019-00127-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112520241


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Melbourne", 
              "id": "https://www.grid.ac/institutes/grid.1008.9", 
              "name": [
                "Department of Mechanical Engineering, The University of Melbourne, 3010, Parkville, Victoria, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Molla", 
            "givenName": "Tesfaye T.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Melbourne", 
              "id": "https://www.grid.ac/institutes/grid.1008.9", 
              "name": [
                "Department of Mechanical Engineering, The University of Melbourne, 3010, Parkville, Victoria, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "J. Z.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Melbourne", 
              "id": "https://www.grid.ac/institutes/grid.1008.9", 
              "name": [
                "Department of Mechanical Engineering, The University of Melbourne, 3010, Parkville, Victoria, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schaffer", 
            "givenName": "G. B.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11837-003-0172-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004111240", 
              "https://doi.org/10.1007/s11837-003-0172-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0021998309344640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005367964"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0021998309344640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005367964"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:jmsc.0000004407.63082.f1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005856918", 
              "https://doi.org/10.1023/b:jmsc.0000004407.63082.f1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jeurceramsoc.2012.12.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006746670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1151-2916.1997.tb03076.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013499329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-006-0666-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028724570", 
              "https://doi.org/10.1007/s00170-006-0666-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-006-0666-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028724570", 
              "https://doi.org/10.1007/s00170-006-0666-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10408436.2010.525197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028822235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1151-2916.2001.tb01091.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032899414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1151-2916.2001.tb01091.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032899414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2006.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033498332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038546745", 
              "https://doi.org/10.1038/nmat4709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jeurceramsoc.2014.10.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042515247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jace.12070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047271651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.msea.2006.03.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047788856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0927-796x(98)00009-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050749812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1736107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057802125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.277.5330.1237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062557816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4028/www.scientific.net/kem.704.148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072098383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.msea.2017.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085860592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40192-017-0101-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091409538", 
              "https://doi.org/10.1007/s40192-017-0101-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12613-017-1531-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099696541", 
              "https://doi.org/10.1007/s12613-017-1531-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40192-018-0115-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105777846", 
              "https://doi.org/10.1007/s40192-018-0115-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.crhy.2018.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106968131"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-04", 
        "datePublishedReg": "2019-03-04", 
        "description": "A new computational method is presented for the efficient design of alloy systems in functionally graded materials (FGMs), optimized for manufacturability (sintering) as well as performance. The design methodology uses a multi-objective genetic algorithm (GA) integrated with computational thermodynamics and physics-based predictive models to optimize the composition of each alloy in the FGM. Thermodynamic modeling, using the CALPHAD method, is used to establish microstructural constraints and calculate the effective diffusivity in each alloy of the FGM. Physics-based predictive models are used to estimate performance properties. The model is verified by comparing results with data from the literature. A design exercise is also presented for an FGM that combines a ferritic and an austenitic stainless steel to demonstrate the capability of the methodology. It is shown that the mismatch in sintering rate between the two alloys, which causes processing defects during co-sintering, can be minimized while the solution hardening and corrosion resistance in the austenitic alloy can be optimized by independently controlling the composition of both alloys, the initial particle sizes and the sintering temperature.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s40192-019-00127-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136615", 
            "issn": [
              "2193-9764", 
              "2193-9772"
            ], 
            "name": "Integrating Materials and Manufacturing Innovation", 
            "type": "Periodical"
          }
        ], 
        "name": "Computational Design of Functionally Graded Materials from Sintered Powders", 
        "pagination": "1-13", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f68400494b3e836799e6f8dd48bb108a9cf2f1623aaded2344f8b84d2bb39afd"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40192-019-00127-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112520241"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40192-019-00127-6", 
          "https://app.dimensions.ai/details/publication/pub.1112520241"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60351_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs40192-019-00127-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40192-019-00127-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40192-019-00127-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40192-019-00127-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40192-019-00127-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    139 TRIPLES      21 PREDICATES      46 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40192-019-00127-6 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N46b5ece8edd94f58bc011b14655e7106
    4 schema:citation sg:pub.10.1007/s00170-006-0666-4
    5 sg:pub.10.1007/s11837-003-0172-1
    6 sg:pub.10.1007/s12613-017-1531-1
    7 sg:pub.10.1007/s40192-017-0101-8
    8 sg:pub.10.1007/s40192-018-0115-x
    9 sg:pub.10.1023/b:jmsc.0000004407.63082.f1
    10 sg:pub.10.1038/nmat4709
    11 https://doi.org/10.1016/j.crhy.2018.08.001
    12 https://doi.org/10.1016/j.ejor.2006.08.002
    13 https://doi.org/10.1016/j.jeurceramsoc.2012.12.019
    14 https://doi.org/10.1016/j.jeurceramsoc.2014.10.010
    15 https://doi.org/10.1016/j.msea.2006.03.032
    16 https://doi.org/10.1016/j.msea.2017.06.001
    17 https://doi.org/10.1016/s0927-796x(98)00009-6
    18 https://doi.org/10.1063/1.1736107
    19 https://doi.org/10.1080/10408436.2010.525197
    20 https://doi.org/10.1111/j.1151-2916.1997.tb03076.x
    21 https://doi.org/10.1111/j.1151-2916.2001.tb01091.x
    22 https://doi.org/10.1111/jace.12070
    23 https://doi.org/10.1126/science.277.5330.1237
    24 https://doi.org/10.1177/0021998309344640
    25 https://doi.org/10.4028/www.scientific.net/kem.704.148
    26 schema:datePublished 2019-03-04
    27 schema:datePublishedReg 2019-03-04
    28 schema:description A new computational method is presented for the efficient design of alloy systems in functionally graded materials (FGMs), optimized for manufacturability (sintering) as well as performance. The design methodology uses a multi-objective genetic algorithm (GA) integrated with computational thermodynamics and physics-based predictive models to optimize the composition of each alloy in the FGM. Thermodynamic modeling, using the CALPHAD method, is used to establish microstructural constraints and calculate the effective diffusivity in each alloy of the FGM. Physics-based predictive models are used to estimate performance properties. The model is verified by comparing results with data from the literature. A design exercise is also presented for an FGM that combines a ferritic and an austenitic stainless steel to demonstrate the capability of the methodology. It is shown that the mismatch in sintering rate between the two alloys, which causes processing defects during co-sintering, can be minimized while the solution hardening and corrosion resistance in the austenitic alloy can be optimized by independently controlling the composition of both alloys, the initial particle sizes and the sintering temperature.
    29 schema:genre research_article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree false
    32 schema:isPartOf sg:journal.1136615
    33 schema:name Computational Design of Functionally Graded Materials from Sintered Powders
    34 schema:pagination 1-13
    35 schema:productId N368dcbe5c9f8461ebd4d39591815a09b
    36 N717199137afa4a6f9e5bd8a64b32299e
    37 Nd12f47679fa344619c5846f1e493af08
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112520241
    39 https://doi.org/10.1007/s40192-019-00127-6
    40 schema:sdDatePublished 2019-04-11T11:02
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher Nf697571b966641a0ba78c1ea0e3f03db
    43 schema:url https://link.springer.com/10.1007%2Fs40192-019-00127-6
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N368dcbe5c9f8461ebd4d39591815a09b schema:name dimensions_id
    48 schema:value pub.1112520241
    49 rdf:type schema:PropertyValue
    50 N41ed3bf3395a4d338219b264c78d7d5a schema:affiliation https://www.grid.ac/institutes/grid.1008.9
    51 schema:familyName Liu
    52 schema:givenName J. Z.
    53 rdf:type schema:Person
    54 N46b5ece8edd94f58bc011b14655e7106 rdf:first N7e7e4bf909a5447dae6bee13b90ce507
    55 rdf:rest Nee6d1500d304403eb0bb7e804687da76
    56 N501705c83bb3495eab501f24bf00d0df schema:affiliation https://www.grid.ac/institutes/grid.1008.9
    57 schema:familyName Schaffer
    58 schema:givenName G. B.
    59 rdf:type schema:Person
    60 N717199137afa4a6f9e5bd8a64b32299e schema:name readcube_id
    61 schema:value f68400494b3e836799e6f8dd48bb108a9cf2f1623aaded2344f8b84d2bb39afd
    62 rdf:type schema:PropertyValue
    63 N7e7e4bf909a5447dae6bee13b90ce507 schema:affiliation https://www.grid.ac/institutes/grid.1008.9
    64 schema:familyName Molla
    65 schema:givenName Tesfaye T.
    66 rdf:type schema:Person
    67 Nae5f56b106864f1a9567e83c443914e1 rdf:first N501705c83bb3495eab501f24bf00d0df
    68 rdf:rest rdf:nil
    69 Nd12f47679fa344619c5846f1e493af08 schema:name doi
    70 schema:value 10.1007/s40192-019-00127-6
    71 rdf:type schema:PropertyValue
    72 Nee6d1500d304403eb0bb7e804687da76 rdf:first N41ed3bf3395a4d338219b264c78d7d5a
    73 rdf:rest Nae5f56b106864f1a9567e83c443914e1
    74 Nf697571b966641a0ba78c1ea0e3f03db schema:name Springer Nature - SN SciGraph project
    75 rdf:type schema:Organization
    76 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Engineering
    78 rdf:type schema:DefinedTerm
    79 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Materials Engineering
    81 rdf:type schema:DefinedTerm
    82 sg:journal.1136615 schema:issn 2193-9764
    83 2193-9772
    84 schema:name Integrating Materials and Manufacturing Innovation
    85 rdf:type schema:Periodical
    86 sg:pub.10.1007/s00170-006-0666-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028724570
    87 https://doi.org/10.1007/s00170-006-0666-4
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/s11837-003-0172-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004111240
    90 https://doi.org/10.1007/s11837-003-0172-1
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/s12613-017-1531-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099696541
    93 https://doi.org/10.1007/s12613-017-1531-1
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/s40192-017-0101-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091409538
    96 https://doi.org/10.1007/s40192-017-0101-8
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/s40192-018-0115-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1105777846
    99 https://doi.org/10.1007/s40192-018-0115-x
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1023/b:jmsc.0000004407.63082.f1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005856918
    102 https://doi.org/10.1023/b:jmsc.0000004407.63082.f1
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1038/nmat4709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038546745
    105 https://doi.org/10.1038/nmat4709
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/j.crhy.2018.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106968131
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/j.ejor.2006.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033498332
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.jeurceramsoc.2012.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006746670
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/j.jeurceramsoc.2014.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042515247
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.msea.2006.03.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047788856
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/j.msea.2017.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085860592
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/s0927-796x(98)00009-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050749812
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1063/1.1736107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057802125
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1080/10408436.2010.525197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028822235
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1111/j.1151-2916.1997.tb03076.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013499329
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1111/j.1151-2916.2001.tb01091.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032899414
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1111/jace.12070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047271651
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1126/science.277.5330.1237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062557816
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1177/0021998309344640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005367964
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.4028/www.scientific.net/kem.704.148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072098383
    136 rdf:type schema:CreativeWork
    137 https://www.grid.ac/institutes/grid.1008.9 schema:alternateName University of Melbourne
    138 schema:name Department of Mechanical Engineering, The University of Melbourne, 3010, Parkville, Victoria, Australia
    139 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...