Three-dimensional Analysis and Reconstruction of Additively Manufactured Materials in the Cloud-Based BisQue Infrastructure View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Andrew T. Polonsky, Christian A. Lang, Kristian G. Kvilekval, Marat I. Latypov, McLean P. Echlin, B. S. Manjunath, Tresa M. Pollock

ABSTRACT

A microstructure analytics and 3D reconstruction software package, DREAM.3D, was integrated as a module into a cloud-based platform, BisQue. Parallelization of DREAM.3D module executions and the ability to parameterize pipeline variables over a range of values have led to insights about the grain segmentation misorientation tolerance in TriBeam-collected 3D EBSD datasets of additively manufactured materials with complex anisotropic microstructures. Furthermore, a comparison in grain size measurements was made between standard 2D metallographic slices and 3D measures using BisQue’s parallelized DREAM.3D module executions. The direction of cloud-based data infrastructure and the prospects for impact in material science are also discussed. More... »

PAGES

37-51

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40192-019-00126-7

DOI

http://dx.doi.org/10.1007/s40192-019-00126-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112949140


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Materials Department, University of California Santa Barbara, 93106, Santa Barbara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Polonsky", 
        "givenName": "Andrew T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Electrical and Computer Engineering Department, University of California Santa Barbara, 93106, Santa Barbara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lang", 
        "givenName": "Christian A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Electrical and Computer Engineering Department, University of California Santa Barbara, 93106, Santa Barbara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kvilekval", 
        "givenName": "Kristian G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Materials Department, University of California Santa Barbara, 93106, Santa Barbara, CA, USA", 
            "Mechanical Engineering Department, University of California Santa Barbara, 93106, Santa Barbara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Latypov", 
        "givenName": "Marat I.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Materials Department, University of California Santa Barbara, 93106, Santa Barbara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Echlin", 
        "givenName": "McLean P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Electrical and Computer Engineering Department, University of California Santa Barbara, 93106, Santa Barbara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manjunath", 
        "givenName": "B. S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Materials Department, University of California Santa Barbara, 93106, Santa Barbara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pollock", 
        "givenName": "Tresa M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1107/s0021889808001684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002130377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/026708310x12688283410280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002750167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1757-899x/55/1/012020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007214446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.12.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011793772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.12.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011793772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.12.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011793772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40192-014-0021-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014824955", 
          "https://doi.org/10.1186/s40192-014-0021-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40192-014-0021-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014824955", 
          "https://doi.org/10.1186/s40192-014-0021-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40192-014-0021-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014824955", 
          "https://doi.org/10.1186/s40192-014-0021-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2014.06.172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015813046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-013-0755-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017981586", 
          "https://doi.org/10.1007/s11837-013-0755-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11340-015-0083-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018795765", 
          "https://doi.org/10.1007/s11340-015-0083-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2818.2007.01814.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020493114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2012.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021680892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s143192761100506x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024365534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3991(96)00104-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026389636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-012387582-2/50038-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027404295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4812323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027518534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2006.01.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028582322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/rpj-11-2015-0161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030456340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781119075646.ch61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031276882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1431927611000055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032605301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2004.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034608029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-015-1802-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035263391", 
          "https://doi.org/10.1007/s11837-015-1802-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-015-1802-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035263391", 
          "https://doi.org/10.1007/s11837-015-1802-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmhm.2008.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035911886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2014.10.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035987626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036191837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.micron.2015.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038798109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultramic.2014.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039046998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0021889813002604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039255842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02656503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044700508", 
          "https://doi.org/10.1007/bf02656503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.10.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047314646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.10.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047314646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.10.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047314646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.05.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047369269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.05.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047369269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2018412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047797455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2016.10.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050032103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2016.10.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050032103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2016.10.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050032103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2193-9772-3-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052006640", 
          "https://doi.org/10.1186/2193-9772-3-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/1743284714y.0000000697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052127309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-010-0397-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052238744", 
          "https://doi.org/10.1007/s11661-010-0397-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3680111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057999402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3139/147.110060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071033135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5860/choice.33-3342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073335074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cag.2017.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083868226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cag.2017.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083868226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cag.2017.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083868226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2017.03.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084978494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adem.201700102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085031305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1757-899x/219/1/012002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091016519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat5021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092446331", 
          "https://doi.org/10.1038/nmat5021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat5021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092446331", 
          "https://doi.org/10.1038/nmat5021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2018.02.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101095083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5031506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103566228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2018.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105493768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2018.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107143959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2351/1.5063214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107677264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2018.11.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110481552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2018.11.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110481552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40192-019-00128-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112896310", 
          "https://doi.org/10.1007/s40192-019-00128-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40192-019-00128-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112896310", 
          "https://doi.org/10.1007/s40192-019-00128-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "A microstructure analytics and 3D reconstruction software package, DREAM.3D, was integrated as a module into a cloud-based platform, BisQue. Parallelization of DREAM.3D module executions and the ability to parameterize pipeline variables over a range of values have led to insights about the grain segmentation misorientation tolerance in TriBeam-collected 3D EBSD datasets of additively manufactured materials with complex anisotropic microstructures. Furthermore, a comparison in grain size measurements was made between standard 2D metallographic slices and 3D measures using BisQue\u2019s parallelized DREAM.3D module executions. The direction of cloud-based data infrastructure and the prospects for impact in material science are also discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40192-019-00126-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5542542", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7058070", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136615", 
        "issn": [
          "2193-9764", 
          "2193-9772"
        ], 
        "name": "Integrating Materials and Manufacturing Innovation", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Three-dimensional Analysis and Reconstruction of Additively Manufactured Materials in the Cloud-Based BisQue Infrastructure", 
    "pagination": "37-51", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e49d42b86ca8ffefb3e29f98684b66eb7a05b75531f533fea1876de575ec267f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40192-019-00126-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112949140"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40192-019-00126-7", 
      "https://app.dimensions.ai/details/publication/pub.1112949140"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78941_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40192-019-00126-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40192-019-00126-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40192-019-00126-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40192-019-00126-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40192-019-00126-7'


 

This table displays all metadata directly associated to this object as RDF triples.

258 TRIPLES      21 PREDICATES      76 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40192-019-00126-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N26e844f5a7ac406faff90964d8bf6b3c
4 schema:citation sg:pub.10.1007/bf02656503
5 sg:pub.10.1007/s11340-015-0083-4
6 sg:pub.10.1007/s11661-010-0397-x
7 sg:pub.10.1007/s11837-013-0755-4
8 sg:pub.10.1007/s11837-015-1802-0
9 sg:pub.10.1007/s40192-019-00128-5
10 sg:pub.10.1038/nmat5021
11 sg:pub.10.1186/2193-9772-3-5
12 sg:pub.10.1186/s40192-014-0021-9
13 https://doi.org/10.1002/9781119075646.ch61
14 https://doi.org/10.1002/adem.201700102
15 https://doi.org/10.1016/b978-012387582-2/50038-1
16 https://doi.org/10.1016/j.actamat.2016.05.017
17 https://doi.org/10.1016/j.actamat.2016.10.055
18 https://doi.org/10.1016/j.actamat.2016.12.073
19 https://doi.org/10.1016/j.actamat.2018.07.013
20 https://doi.org/10.1016/j.cag.2017.02.005
21 https://doi.org/10.1016/j.cma.2018.11.034
22 https://doi.org/10.1016/j.commatsci.2017.03.053
23 https://doi.org/10.1016/j.ijrmhm.2008.06.009
24 https://doi.org/10.1016/j.jallcom.2014.06.172
25 https://doi.org/10.1016/j.jmatprotec.2016.10.023
26 https://doi.org/10.1016/j.matchar.2006.01.019
27 https://doi.org/10.1016/j.matchar.2014.10.023
28 https://doi.org/10.1016/j.matchar.2018.02.020
29 https://doi.org/10.1016/j.matchar.2018.09.020
30 https://doi.org/10.1016/j.micron.2015.07.004
31 https://doi.org/10.1016/j.scriptamat.2004.05.016
32 https://doi.org/10.1016/j.scriptamat.2012.06.014
33 https://doi.org/10.1016/j.ultramic.2014.09.007
34 https://doi.org/10.1016/s0304-3991(96)00104-0
35 https://doi.org/10.1017/s1431927611000055
36 https://doi.org/10.1017/s143192761100506x
37 https://doi.org/10.1063/1.3680111
38 https://doi.org/10.1063/1.4812323
39 https://doi.org/10.1063/1.5031506
40 https://doi.org/10.1088/1757-899x/219/1/012002
41 https://doi.org/10.1088/1757-899x/55/1/012020
42 https://doi.org/10.1093/bioinformatics/btp699
43 https://doi.org/10.1107/s0021889808001684
44 https://doi.org/10.1107/s0021889813002604
45 https://doi.org/10.1108/rpj-11-2015-0161
46 https://doi.org/10.1111/j.1365-2818.2007.01814.x
47 https://doi.org/10.1117/12.2018412
48 https://doi.org/10.1179/026708310x12688283410280
49 https://doi.org/10.1179/1743284714y.0000000697
50 https://doi.org/10.2351/1.5063214
51 https://doi.org/10.3139/147.110060
52 https://doi.org/10.5860/choice.33-3342
53 schema:datePublished 2019-03
54 schema:datePublishedReg 2019-03-01
55 schema:description A microstructure analytics and 3D reconstruction software package, DREAM.3D, was integrated as a module into a cloud-based platform, BisQue. Parallelization of DREAM.3D module executions and the ability to parameterize pipeline variables over a range of values have led to insights about the grain segmentation misorientation tolerance in TriBeam-collected 3D EBSD datasets of additively manufactured materials with complex anisotropic microstructures. Furthermore, a comparison in grain size measurements was made between standard 2D metallographic slices and 3D measures using BisQue’s parallelized DREAM.3D module executions. The direction of cloud-based data infrastructure and the prospects for impact in material science are also discussed.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree false
59 schema:isPartOf N57136eb540ad4ef08ed4059087718af9
60 Nd72046f72c454aa8855a7705bcde0c8a
61 sg:journal.1136615
62 schema:name Three-dimensional Analysis and Reconstruction of Additively Manufactured Materials in the Cloud-Based BisQue Infrastructure
63 schema:pagination 37-51
64 schema:productId N37929eb430974270af34877ffb55acbc
65 N4ef7938a3283483885befb581e882011
66 Nc4f7b03f650d43218cae9aa97f3836d7
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112949140
68 https://doi.org/10.1007/s40192-019-00126-7
69 schema:sdDatePublished 2019-04-11T13:18
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N6d38e2a091e249fba203128ede389670
72 schema:url https://link.springer.com/10.1007%2Fs40192-019-00126-7
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N069dc7a297da4f4b81393f9acf19c4c0 rdf:first N43d75d30a6aa4ebebd24a1404dd58f11
77 rdf:rest rdf:nil
78 N26e844f5a7ac406faff90964d8bf6b3c rdf:first N28b806928fd641e387e5c0a57a591ad7
79 rdf:rest Na1b6f9828172476eb6ab6d608fc72683
80 N28b806928fd641e387e5c0a57a591ad7 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
81 schema:familyName Polonsky
82 schema:givenName Andrew T.
83 rdf:type schema:Person
84 N37929eb430974270af34877ffb55acbc schema:name readcube_id
85 schema:value e49d42b86ca8ffefb3e29f98684b66eb7a05b75531f533fea1876de575ec267f
86 rdf:type schema:PropertyValue
87 N39fd5d865d494237b24570a0612c17bc rdf:first N84c768a214b14d36be24c77e6fac33bc
88 rdf:rest Nf9eb9e4e3bff4ca398e18a376a62c35c
89 N43d75d30a6aa4ebebd24a1404dd58f11 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
90 schema:familyName Pollock
91 schema:givenName Tresa M.
92 rdf:type schema:Person
93 N4ef7938a3283483885befb581e882011 schema:name dimensions_id
94 schema:value pub.1112949140
95 rdf:type schema:PropertyValue
96 N57136eb540ad4ef08ed4059087718af9 schema:volumeNumber 8
97 rdf:type schema:PublicationVolume
98 N6d38e2a091e249fba203128ede389670 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N7c76fc115c284139b5f8e5c34c7d16e8 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
101 schema:familyName Lang
102 schema:givenName Christian A.
103 rdf:type schema:Person
104 N84c768a214b14d36be24c77e6fac33bc schema:affiliation https://www.grid.ac/institutes/grid.133342.4
105 schema:familyName Kvilekval
106 schema:givenName Kristian G.
107 rdf:type schema:Person
108 N85fb3d1703954652a1d47529c362015f schema:affiliation https://www.grid.ac/institutes/grid.133342.4
109 schema:familyName Manjunath
110 schema:givenName B. S.
111 rdf:type schema:Person
112 N9067bdca40f042ec809cd30f8a3d303d schema:affiliation https://www.grid.ac/institutes/grid.133342.4
113 schema:familyName Latypov
114 schema:givenName Marat I.
115 rdf:type schema:Person
116 N9ea1ba2bcf6d446a9069de1a45b37ccb schema:affiliation https://www.grid.ac/institutes/grid.133342.4
117 schema:familyName Echlin
118 schema:givenName McLean P.
119 rdf:type schema:Person
120 Na1b6f9828172476eb6ab6d608fc72683 rdf:first N7c76fc115c284139b5f8e5c34c7d16e8
121 rdf:rest N39fd5d865d494237b24570a0612c17bc
122 Na21091cc2de947b087c822c7f477dba3 rdf:first N85fb3d1703954652a1d47529c362015f
123 rdf:rest N069dc7a297da4f4b81393f9acf19c4c0
124 Nc4f7b03f650d43218cae9aa97f3836d7 schema:name doi
125 schema:value 10.1007/s40192-019-00126-7
126 rdf:type schema:PropertyValue
127 Ncbffad614a0847879087534ea9eb1f33 rdf:first N9ea1ba2bcf6d446a9069de1a45b37ccb
128 rdf:rest Na21091cc2de947b087c822c7f477dba3
129 Nd72046f72c454aa8855a7705bcde0c8a schema:issueNumber 1
130 rdf:type schema:PublicationIssue
131 Nf9eb9e4e3bff4ca398e18a376a62c35c rdf:first N9067bdca40f042ec809cd30f8a3d303d
132 rdf:rest Ncbffad614a0847879087534ea9eb1f33
133 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
134 schema:name Information and Computing Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
137 schema:name Artificial Intelligence and Image Processing
138 rdf:type schema:DefinedTerm
139 sg:grant.5542542 http://pending.schema.org/fundedItem sg:pub.10.1007/s40192-019-00126-7
140 rdf:type schema:MonetaryGrant
141 sg:grant.7058070 http://pending.schema.org/fundedItem sg:pub.10.1007/s40192-019-00126-7
142 rdf:type schema:MonetaryGrant
143 sg:journal.1136615 schema:issn 2193-9764
144 2193-9772
145 schema:name Integrating Materials and Manufacturing Innovation
146 rdf:type schema:Periodical
147 sg:pub.10.1007/bf02656503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044700508
148 https://doi.org/10.1007/bf02656503
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s11340-015-0083-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018795765
151 https://doi.org/10.1007/s11340-015-0083-4
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s11661-010-0397-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052238744
154 https://doi.org/10.1007/s11661-010-0397-x
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s11837-013-0755-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017981586
157 https://doi.org/10.1007/s11837-013-0755-4
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s11837-015-1802-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035263391
160 https://doi.org/10.1007/s11837-015-1802-0
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s40192-019-00128-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112896310
163 https://doi.org/10.1007/s40192-019-00128-5
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nmat5021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092446331
166 https://doi.org/10.1038/nmat5021
167 rdf:type schema:CreativeWork
168 sg:pub.10.1186/2193-9772-3-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052006640
169 https://doi.org/10.1186/2193-9772-3-5
170 rdf:type schema:CreativeWork
171 sg:pub.10.1186/s40192-014-0021-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014824955
172 https://doi.org/10.1186/s40192-014-0021-9
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/9781119075646.ch61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031276882
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/adem.201700102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085031305
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/b978-012387582-2/50038-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027404295
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.actamat.2016.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047369269
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.actamat.2016.10.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047314646
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.actamat.2016.12.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011793772
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.actamat.2018.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105493768
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.cag.2017.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083868226
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.cma.2018.11.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110481552
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.commatsci.2017.03.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084978494
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.ijrmhm.2008.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035911886
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.jallcom.2014.06.172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015813046
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.jmatprotec.2016.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050032103
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.matchar.2006.01.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028582322
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.matchar.2014.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035987626
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.matchar.2018.02.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101095083
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.matchar.2018.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107143959
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.micron.2015.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038798109
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.scriptamat.2004.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034608029
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.scriptamat.2012.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021680892
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.ultramic.2014.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039046998
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/s0304-3991(96)00104-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026389636
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1017/s1431927611000055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032605301
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1017/s143192761100506x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024365534
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1063/1.3680111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057999402
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1063/1.4812323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027518534
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1063/1.5031506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103566228
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1088/1757-899x/219/1/012002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091016519
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1088/1757-899x/55/1/012020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007214446
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1093/bioinformatics/btp699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036191837
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1107/s0021889808001684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002130377
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1107/s0021889813002604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039255842
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1108/rpj-11-2015-0161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030456340
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1111/j.1365-2818.2007.01814.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020493114
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1117/12.2018412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047797455
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1179/026708310x12688283410280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002750167
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1179/1743284714y.0000000697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052127309
247 rdf:type schema:CreativeWork
248 https://doi.org/10.2351/1.5063214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107677264
249 rdf:type schema:CreativeWork
250 https://doi.org/10.3139/147.110060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071033135
251 rdf:type schema:CreativeWork
252 https://doi.org/10.5860/choice.33-3342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073335074
253 rdf:type schema:CreativeWork
254 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
255 schema:name Electrical and Computer Engineering Department, University of California Santa Barbara, 93106, Santa Barbara, CA, USA
256 Materials Department, University of California Santa Barbara, 93106, Santa Barbara, CA, USA
257 Mechanical Engineering Department, University of California Santa Barbara, 93106, Santa Barbara, CA, USA
258 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...