Process-Structure-Property Modeling for Severe Plastic Deformation Processes Using Orientation Imaging Microscopy and Data-Driven Techniques View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Patxi Fernandez-Zelaia, Shreyes N. Melkote

ABSTRACT

Machining is a severe plastic deformation process, wherein the workpiece material is subjected to high deformation rates and temperatures. During metal machining, the dynamic recrystallization mechanism causes grain refinement into the sub-micron range. In this study, we investigate the microstructure evolution of oxygen-free high conductivity copper (OFHC Cu) subject to a machining process where the cutting speed and rake angle are controlled to manipulate the process strain, strain rate, and temperatures. Microstructures of the deformed chips are quantified using orientation imaging microscopy and novel statistical descriptors that capture the morphology and local lattice misorientations generated during the several mechanistic stages of the dynamic recrystallization process. Mechanical properties of the resulting chips are quantified using spherical nanoindentation protocols. A multiple output Gaussian process regression model is used to simultaneously model the structure-property evolution, which differs from more common approaches that establish such relationships sequentially. This modeling strategy is particularly attractive since it can flexibly provide both structure and property uncertainty estimates. In addition, the statistical modeling framework allows for the inclusion of multi-fidelity data. The statistical metrics utilized serve as efficient microstructure descriptors, which retain the physics of the observed structures without having to introduce ad hoc microstructure feature definitions. More... »

PAGES

17-36

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40192-019-00125-8

DOI

http://dx.doi.org/10.1007/s40192-019-00125-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112897076


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Georgia Institute of Technology, 813 Ferst Dr NW, 30332, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fernandez-Zelaia", 
        "givenName": "Patxi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Georgia Institute of Technology, 813 Ferst Dr NW, 30332, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Melkote", 
        "givenName": "Shreyes N.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2008.11.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003395719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2013.06.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005816020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep19375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007873778", 
          "https://doi.org/10.1038/srep19375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2010.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009104806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2009.07.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011410374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2005.03.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014155991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/env.473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014904621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5096(98)00020-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018292794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(82)90031-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019970349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(82)90031-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019970349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cirp.2012.03.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021461439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2011.09.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021751470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2008.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023576025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5416(83)90044-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024694068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5416(83)90044-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024694068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2193-9772-3-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025440583", 
          "https://doi.org/10.1186/2193-9772-3-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2011.09.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026920386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-92407-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031309477", 
          "https://doi.org/10.1007/978-0-387-92407-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-92407-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031309477", 
          "https://doi.org/10.1007/978-0-387-92407-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2009.03.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031924563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2005.08.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033041284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2011.06.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034679351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2011.03.076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036362412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6425(99)00007-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036791587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.06.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039222671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.06.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039222671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2004.05.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039659707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-016-2036-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040099551", 
          "https://doi.org/10.1007/s11837-016-2036-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-016-2036-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040099551", 
          "https://doi.org/10.1007/s11837-016-2036-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2006.11.095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041110353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2009.191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041355599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2014.08.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041863078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-014-2672-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042048129", 
          "https://doi.org/10.1007/s11661-014-2672-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042110240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/jmr.2009.0137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042119094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40192-015-0044-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042237011", 
          "https://doi.org/10.1186/s40192-015-0044-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40192-015-0044-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042237011", 
          "https://doi.org/10.1186/s40192-015-0044-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2004.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043707656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2010.08.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044454371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cirp.2015.04.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044657501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cirp.2015.04.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044657501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-28650-9_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046421471", 
          "https://doi.org/10.1007/978-3-540-28650-9_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-28650-9_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046421471", 
          "https://doi.org/10.1007/978-3-540-28650-9_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/2.068203jes", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047713179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.10.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051223328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.10.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051223328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.10.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051223328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(04)00874-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054663438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.2013.842935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058288155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4006549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062146878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/mrs.2016.164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067967397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v076.i01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068673140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078408250", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10910344.2016.1260428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083438738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084055680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084055680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084055680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.11.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092714607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2018.03.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101551479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/jmr.2018.58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103660647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2018.07.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105856801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2018.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107163372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109705929", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4541-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705929", 
          "https://doi.org/10.1007/978-1-4899-4541-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4541-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705929", 
          "https://doi.org/10.1007/978-1-4899-4541-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Machining is a severe plastic deformation process, wherein the workpiece material is subjected to high deformation rates and temperatures. During metal machining, the dynamic recrystallization mechanism causes grain refinement into the sub-micron range. In this study, we investigate the microstructure evolution of oxygen-free high conductivity copper (OFHC Cu) subject to a machining process where the cutting speed and rake angle are controlled to manipulate the process strain, strain rate, and temperatures. Microstructures of the deformed chips are quantified using orientation imaging microscopy and novel statistical descriptors that capture the morphology and local lattice misorientations generated during the several mechanistic stages of the dynamic recrystallization process. Mechanical properties of the resulting chips are quantified using spherical nanoindentation protocols. A multiple output Gaussian process regression model is used to simultaneously model the structure-property evolution, which differs from more common approaches that establish such relationships sequentially. This modeling strategy is particularly attractive since it can flexibly provide both structure and property uncertainty estimates. In addition, the statistical modeling framework allows for the inclusion of multi-fidelity data. The statistical metrics utilized serve as efficient microstructure descriptors, which retain the physics of the observed structures without having to introduce ad hoc microstructure feature definitions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40192-019-00125-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136615", 
        "issn": [
          "2193-9764", 
          "2193-9772"
        ], 
        "name": "Integrating Materials and Manufacturing Innovation", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Process-Structure-Property Modeling for Severe Plastic Deformation Processes Using Orientation Imaging Microscopy and Data-Driven Techniques", 
    "pagination": "17-36", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3dde3d8fb1b1c294c2762b363e2c1e04f45c774501083a868fc9442ca53d8ff7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40192-019-00125-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112897076"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40192-019-00125-8", 
      "https://app.dimensions.ai/details/publication/pub.1112897076"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68984_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40192-019-00125-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40192-019-00125-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40192-019-00125-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40192-019-00125-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40192-019-00125-8'


 

This table displays all metadata directly associated to this object as RDF triples.

228 TRIPLES      21 PREDICATES      79 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40192-019-00125-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N69db44a7f246499baf8d0fcca0dc5b4f
4 schema:citation sg:pub.10.1007/978-0-387-92407-6
5 sg:pub.10.1007/978-1-4899-4541-9
6 sg:pub.10.1007/978-3-540-28650-9_4
7 sg:pub.10.1007/s11661-014-2672-8
8 sg:pub.10.1007/s11837-016-2036-5
9 sg:pub.10.1038/srep19375
10 sg:pub.10.1186/2193-9772-3-8
11 sg:pub.10.1186/s40192-015-0044-x
12 https://app.dimensions.ai/details/publication/pub.1078408250
13 https://app.dimensions.ai/details/publication/pub.1109705929
14 https://doi.org/10.1002/env.473
15 https://doi.org/10.1016/0001-6160(82)90031-1
16 https://doi.org/10.1016/0025-5416(83)90044-7
17 https://doi.org/10.1016/j.actamat.2004.05.024
18 https://doi.org/10.1016/j.actamat.2005.03.052
19 https://doi.org/10.1016/j.actamat.2009.07.052
20 https://doi.org/10.1016/j.actamat.2010.08.036
21 https://doi.org/10.1016/j.actamat.2010.10.008
22 https://doi.org/10.1016/j.actamat.2011.03.076
23 https://doi.org/10.1016/j.actamat.2011.06.051
24 https://doi.org/10.1016/j.actamat.2011.09.055
25 https://doi.org/10.1016/j.actamat.2014.08.022
26 https://doi.org/10.1016/j.actamat.2016.06.033
27 https://doi.org/10.1016/j.actamat.2016.10.033
28 https://doi.org/10.1016/j.actamat.2017.03.009
29 https://doi.org/10.1016/j.actamat.2017.11.024
30 https://doi.org/10.1016/j.actamat.2018.07.056
31 https://doi.org/10.1016/j.cirp.2012.03.058
32 https://doi.org/10.1016/j.cirp.2015.04.059
33 https://doi.org/10.1016/j.commatsci.2004.07.004
34 https://doi.org/10.1016/j.ijmachtools.2018.09.004
35 https://doi.org/10.1016/j.jpowsour.2011.09.035
36 https://doi.org/10.1016/j.jpowsour.2013.06.100
37 https://doi.org/10.1016/j.matdes.2018.03.037
38 https://doi.org/10.1016/j.msea.2005.08.139
39 https://doi.org/10.1016/j.msea.2006.11.095
40 https://doi.org/10.1016/j.msea.2009.03.051
41 https://doi.org/10.1016/j.pmatsci.2008.03.002
42 https://doi.org/10.1016/j.scriptamat.2008.11.028
43 https://doi.org/10.1016/s0022-5096(98)00020-9
44 https://doi.org/10.1016/s0079-6425(99)00007-9
45 https://doi.org/10.1016/s0921-5093(04)00874-3
46 https://doi.org/10.1080/00401706.2013.842935
47 https://doi.org/10.1080/10910344.2016.1260428
48 https://doi.org/10.1109/tkde.2009.191
49 https://doi.org/10.1111/1467-9868.00294
50 https://doi.org/10.1115/1.4006549
51 https://doi.org/10.1149/2.068203jes
52 https://doi.org/10.1557/jmr.2009.0137
53 https://doi.org/10.1557/jmr.2018.58
54 https://doi.org/10.1557/mrs.2016.164
55 https://doi.org/10.18637/jss.v076.i01
56 schema:datePublished 2019-03
57 schema:datePublishedReg 2019-03-01
58 schema:description Machining is a severe plastic deformation process, wherein the workpiece material is subjected to high deformation rates and temperatures. During metal machining, the dynamic recrystallization mechanism causes grain refinement into the sub-micron range. In this study, we investigate the microstructure evolution of oxygen-free high conductivity copper (OFHC Cu) subject to a machining process where the cutting speed and rake angle are controlled to manipulate the process strain, strain rate, and temperatures. Microstructures of the deformed chips are quantified using orientation imaging microscopy and novel statistical descriptors that capture the morphology and local lattice misorientations generated during the several mechanistic stages of the dynamic recrystallization process. Mechanical properties of the resulting chips are quantified using spherical nanoindentation protocols. A multiple output Gaussian process regression model is used to simultaneously model the structure-property evolution, which differs from more common approaches that establish such relationships sequentially. This modeling strategy is particularly attractive since it can flexibly provide both structure and property uncertainty estimates. In addition, the statistical modeling framework allows for the inclusion of multi-fidelity data. The statistical metrics utilized serve as efficient microstructure descriptors, which retain the physics of the observed structures without having to introduce ad hoc microstructure feature definitions.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree false
62 schema:isPartOf N8d73e78694234b27943cce3721874844
63 Nda1a6430232c4e4e91df0fbf4a1f286c
64 sg:journal.1136615
65 schema:name Process-Structure-Property Modeling for Severe Plastic Deformation Processes Using Orientation Imaging Microscopy and Data-Driven Techniques
66 schema:pagination 17-36
67 schema:productId N15bad7f38a644b2eb9a3fa7b68192e90
68 N1db575d917fd48d4ad3e62116c576dc4
69 Nd689cc318c1f4e9d8e96a3014ea1def7
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112897076
71 https://doi.org/10.1007/s40192-019-00125-8
72 schema:sdDatePublished 2019-04-11T13:25
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N6974129b5ced451eb248ac04da46a77c
75 schema:url https://link.springer.com/10.1007%2Fs40192-019-00125-8
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N0cfbd13227924f49b50d2168e31a1500 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
80 schema:familyName Fernandez-Zelaia
81 schema:givenName Patxi
82 rdf:type schema:Person
83 N15bad7f38a644b2eb9a3fa7b68192e90 schema:name doi
84 schema:value 10.1007/s40192-019-00125-8
85 rdf:type schema:PropertyValue
86 N1db575d917fd48d4ad3e62116c576dc4 schema:name readcube_id
87 schema:value 3dde3d8fb1b1c294c2762b363e2c1e04f45c774501083a868fc9442ca53d8ff7
88 rdf:type schema:PropertyValue
89 N6974129b5ced451eb248ac04da46a77c schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N69db44a7f246499baf8d0fcca0dc5b4f rdf:first N0cfbd13227924f49b50d2168e31a1500
92 rdf:rest Nff525d03a1d54807868b1c03167ac80a
93 N8d73e78694234b27943cce3721874844 schema:volumeNumber 8
94 rdf:type schema:PublicationVolume
95 Ncf959455f2984304a367e6e8d14f907d schema:affiliation https://www.grid.ac/institutes/grid.213917.f
96 schema:familyName Melkote
97 schema:givenName Shreyes N.
98 rdf:type schema:Person
99 Nd689cc318c1f4e9d8e96a3014ea1def7 schema:name dimensions_id
100 schema:value pub.1112897076
101 rdf:type schema:PropertyValue
102 Nda1a6430232c4e4e91df0fbf4a1f286c schema:issueNumber 1
103 rdf:type schema:PublicationIssue
104 Nff525d03a1d54807868b1c03167ac80a rdf:first Ncf959455f2984304a367e6e8d14f907d
105 rdf:rest rdf:nil
106 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
107 schema:name Engineering
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
110 schema:name Materials Engineering
111 rdf:type schema:DefinedTerm
112 sg:journal.1136615 schema:issn 2193-9764
113 2193-9772
114 schema:name Integrating Materials and Manufacturing Innovation
115 rdf:type schema:Periodical
116 sg:pub.10.1007/978-0-387-92407-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031309477
117 https://doi.org/10.1007/978-0-387-92407-6
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/978-1-4899-4541-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705929
120 https://doi.org/10.1007/978-1-4899-4541-9
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/978-3-540-28650-9_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046421471
123 https://doi.org/10.1007/978-3-540-28650-9_4
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s11661-014-2672-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042048129
126 https://doi.org/10.1007/s11661-014-2672-8
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11837-016-2036-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040099551
129 https://doi.org/10.1007/s11837-016-2036-5
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/srep19375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007873778
132 https://doi.org/10.1038/srep19375
133 rdf:type schema:CreativeWork
134 sg:pub.10.1186/2193-9772-3-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025440583
135 https://doi.org/10.1186/2193-9772-3-8
136 rdf:type schema:CreativeWork
137 sg:pub.10.1186/s40192-015-0044-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042237011
138 https://doi.org/10.1186/s40192-015-0044-x
139 rdf:type schema:CreativeWork
140 https://app.dimensions.ai/details/publication/pub.1078408250 schema:CreativeWork
141 https://app.dimensions.ai/details/publication/pub.1109705929 schema:CreativeWork
142 https://doi.org/10.1002/env.473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014904621
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/0001-6160(82)90031-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019970349
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/0025-5416(83)90044-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024694068
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.actamat.2004.05.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039659707
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.actamat.2005.03.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014155991
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.actamat.2009.07.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011410374
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.actamat.2010.08.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044454371
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.actamat.2010.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009104806
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.actamat.2011.03.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036362412
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.actamat.2011.06.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034679351
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.actamat.2011.09.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021751470
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.actamat.2014.08.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041863078
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.actamat.2016.06.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039222671
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.actamat.2016.10.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051223328
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.actamat.2017.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084055680
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.actamat.2017.11.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092714607
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.actamat.2018.07.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105856801
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.cirp.2012.03.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021461439
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.cirp.2015.04.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044657501
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.commatsci.2004.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043707656
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.ijmachtools.2018.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107163372
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.jpowsour.2011.09.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026920386
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.jpowsour.2013.06.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005816020
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.matdes.2018.03.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101551479
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.msea.2005.08.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033041284
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.msea.2006.11.095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041110353
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.msea.2009.03.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031924563
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.pmatsci.2008.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023576025
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.scriptamat.2008.11.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003395719
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/s0022-5096(98)00020-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018292794
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/s0079-6425(99)00007-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036791587
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/s0921-5093(04)00874-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054663438
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1080/00401706.2013.842935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058288155
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1080/10910344.2016.1260428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083438738
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1109/tkde.2009.191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041355599
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1111/1467-9868.00294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042110240
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1115/1.4006549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062146878
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1149/2.068203jes schema:sameAs https://app.dimensions.ai/details/publication/pub.1047713179
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1557/jmr.2009.0137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042119094
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1557/jmr.2018.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103660647
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1557/mrs.2016.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067967397
223 rdf:type schema:CreativeWork
224 https://doi.org/10.18637/jss.v076.i01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068673140
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.213917.f schema:alternateName Georgia Institute of Technology
227 schema:name Georgia Institute of Technology, 813 Ferst Dr NW, 30332, Atlanta, GA, USA
228 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...