Crystal Plasticity Model Calibration for Ti-7Al Alloy with a Multi-fidelity Computational Scheme View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Pınar Acar

ABSTRACT

The present work addresses a Gaussian process-based multi-fidelity computational scheme to enable the crystal plasticity modeling of Ti-7Al alloy. The crystal plasticity simulations are performed by using computational techniques that lead to two different solution fidelities. The first technique involves the use of a one-point probability descriptor, orientation distribution function (ODF), which measures the volume fractions of crystals in different orientations. The ODF is posed as the low-fidelity method in the multi-fidelity scheme since it neglects the effects of the microstructural correlations and grain shapes to the macro-scale stress-strain response of the material. For the high-fidelity computational technique, crystal plasticity finite element method (CPFEM) is utilized. This is because the CPFEM resolves better in grain-level microstructural features. However, the CPFEM is a computationally expensive technique and it is not feasible to be utilized for computationally costly problems. Therefore, a multi-fidelity modeling scheme that improves the low-fidelity ODF simulation data with the high-fidelity CPFEM simulations is utilized to obtain the crystal plasticity parameters. The presented approach uses more samples from the computationally less expensive low-fidelity model and less samples from the computationally expensive high-fidelity model to build a numerical framework that satisfies both accuracy and computational time expectations. The results of the presented multi-fidelity scheme show a significant improvement on the accuracy of the crystal plasticity modeling of Ti-7Al compared to the results of the previous low-fidelity solution. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40192-018-0120-0

DOI

http://dx.doi.org/10.1007/s40192-018-0120-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110203723


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Virginia Tech", 
          "id": "https://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Mechanical Engineering, Virginia Tech, 24061, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Acar", 
        "givenName": "P\u0131nar", 
        "id": "sg:person.013676530145.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013676530145.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00401706.2013.838910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001411642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0749-6419(03)00039-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004045314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0749-6419(03)00039-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004045314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-004-0506-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008012135", 
          "https://doi.org/10.1007/s00158-004-0506-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-004-0506-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008012135", 
          "https://doi.org/10.1007/s00158-004-0506-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-004-0506-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008012135", 
          "https://doi.org/10.1007/s00158-004-0506-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.1992.0111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008906385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03052150600711190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009095385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0021889888000275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010297987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2009.06.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010723037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1359-6454(95)00309-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011961834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0749-6419(03)00092-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014581303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0749-6419(03)00092-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014581303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(85)90188-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015762795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(85)90188-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015762795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2156(08)70320-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016739930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2008-2062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018107859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.10.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018613521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.10.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018613521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.10.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018613521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.2007.1900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018627228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.j051391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018874065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-006-0223-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022567830", 
          "https://doi.org/10.1007/s11837-006-0223-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.j055247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032827295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-005-0587-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034003420", 
          "https://doi.org/10.1007/s00158-005-0587-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-005-0587-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034003420", 
          "https://doi.org/10.1007/s00158-005-0587-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-005-0587-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034003420", 
          "https://doi.org/10.1007/s00158-005-0587-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.1998-4855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038026742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2004.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038553565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep11551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038678083", 
          "https://doi.org/10.1038/srep11551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-002-0153-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039085372", 
          "https://doi.org/10.1007/s11661-002-0153-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-002-0153-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039085372", 
          "https://doi.org/10.1007/s11661-002-0153-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2016-0156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040256650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.j052375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042345025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijplas.2006.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045102915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijplas.2016.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045145247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016334108898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048429806", 
          "https://doi.org/10.1023/a:1016334108898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2010.0051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049277711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.j050384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050523274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5096(96)00001-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051353460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2015.12.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051357761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(93)90361-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052591035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(93)90361-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052591035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2015.09.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053443303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/120884122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062869669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.2016.0751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083780806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.02.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083918025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.02.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083918025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.02.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083918025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.j055689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090532639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2017.08.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091385951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2017.08.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091385951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2017.08.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091385951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/met7110459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092411430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2017-1982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098496413"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The present work addresses a Gaussian process-based multi-fidelity computational scheme to enable the crystal plasticity modeling of Ti-7Al alloy. The crystal plasticity simulations are performed by using computational techniques that lead to two different solution fidelities. The first technique involves the use of a one-point probability descriptor, orientation distribution function (ODF), which measures the volume fractions of crystals in different orientations. The ODF is posed as the low-fidelity method in the multi-fidelity scheme since it neglects the effects of the microstructural correlations and grain shapes to the macro-scale stress-strain response of the material. For the high-fidelity computational technique, crystal plasticity finite element method (CPFEM) is utilized. This is because the CPFEM resolves better in grain-level microstructural features. However, the CPFEM is a computationally expensive technique and it is not feasible to be utilized for computationally costly problems. Therefore, a multi-fidelity modeling scheme that improves the low-fidelity ODF simulation data with the high-fidelity CPFEM simulations is utilized to obtain the crystal plasticity parameters. The presented approach uses more samples from the computationally less expensive low-fidelity model and less samples from the computationally expensive high-fidelity model to build a numerical framework that satisfies both accuracy and computational time expectations. The results of the presented multi-fidelity scheme show a significant improvement on the accuracy of the crystal plasticity modeling of Ti-7Al compared to the results of the previous low-fidelity solution.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40192-018-0120-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136615", 
        "issn": [
          "2193-9764", 
          "2193-9772"
        ], 
        "name": "Integrating Materials and Manufacturing Innovation", 
        "type": "Periodical"
      }
    ], 
    "name": "Crystal Plasticity Model Calibration for Ti-7Al Alloy with a Multi-fidelity Computational Scheme", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "13c4ab5c0a8d1085a1972ec7bd049ebe0d24d212428a683f6a380456a59c528c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40192-018-0120-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110203723"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40192-018-0120-0", 
      "https://app.dimensions.ai/details/publication/pub.1110203723"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000274_0000000274/records_37035_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40192-018-0120-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40192-018-0120-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40192-018-0120-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40192-018-0120-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40192-018-0120-0'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      65 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40192-018-0120-0 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc7c8775795f24ff797a9e6791237daa0
4 schema:citation sg:pub.10.1007/s00158-004-0506-9
5 sg:pub.10.1007/s00158-005-0587-0
6 sg:pub.10.1007/s11661-002-0153-y
7 sg:pub.10.1007/s11837-006-0223-5
8 sg:pub.10.1023/a:1016334108898
9 sg:pub.10.1038/srep11551
10 https://doi.org/10.1016/0001-6160(85)90188-9
11 https://doi.org/10.1016/0022-5096(96)00001-4
12 https://doi.org/10.1016/0956-7151(93)90361-u
13 https://doi.org/10.1016/1359-6454(95)00309-6
14 https://doi.org/10.1016/j.actamat.2004.11.001
15 https://doi.org/10.1016/j.actamat.2015.09.048
16 https://doi.org/10.1016/j.actamat.2015.12.032
17 https://doi.org/10.1016/j.actamat.2016.10.070
18 https://doi.org/10.1016/j.actamat.2017.02.042
19 https://doi.org/10.1016/j.ijplas.2006.10.007
20 https://doi.org/10.1016/j.ijplas.2016.09.002
21 https://doi.org/10.1016/j.msea.2009.06.047
22 https://doi.org/10.1016/j.scriptamat.2017.08.029
23 https://doi.org/10.1016/s0065-2156(08)70320-x
24 https://doi.org/10.1016/s0749-6419(03)00039-1
25 https://doi.org/10.1016/s0749-6419(03)00092-5
26 https://doi.org/10.1080/00401706.2013.838910
27 https://doi.org/10.1080/03052150600711190
28 https://doi.org/10.1098/rspa.2007.1900
29 https://doi.org/10.1098/rspa.2016.0751
30 https://doi.org/10.1098/rsta.1992.0111
31 https://doi.org/10.1098/rsta.2010.0051
32 https://doi.org/10.1107/s0021889888000275
33 https://doi.org/10.1137/120884122
34 https://doi.org/10.2514/1.j050384
35 https://doi.org/10.2514/1.j051391
36 https://doi.org/10.2514/1.j052375
37 https://doi.org/10.2514/1.j055247
38 https://doi.org/10.2514/1.j055689
39 https://doi.org/10.2514/6.1998-4855
40 https://doi.org/10.2514/6.2008-2062
41 https://doi.org/10.2514/6.2016-0156
42 https://doi.org/10.2514/6.2017-1982
43 https://doi.org/10.3390/met7110459
44 schema:datePublished 2018-12
45 schema:datePublishedReg 2018-12-01
46 schema:description The present work addresses a Gaussian process-based multi-fidelity computational scheme to enable the crystal plasticity modeling of Ti-7Al alloy. The crystal plasticity simulations are performed by using computational techniques that lead to two different solution fidelities. The first technique involves the use of a one-point probability descriptor, orientation distribution function (ODF), which measures the volume fractions of crystals in different orientations. The ODF is posed as the low-fidelity method in the multi-fidelity scheme since it neglects the effects of the microstructural correlations and grain shapes to the macro-scale stress-strain response of the material. For the high-fidelity computational technique, crystal plasticity finite element method (CPFEM) is utilized. This is because the CPFEM resolves better in grain-level microstructural features. However, the CPFEM is a computationally expensive technique and it is not feasible to be utilized for computationally costly problems. Therefore, a multi-fidelity modeling scheme that improves the low-fidelity ODF simulation data with the high-fidelity CPFEM simulations is utilized to obtain the crystal plasticity parameters. The presented approach uses more samples from the computationally less expensive low-fidelity model and less samples from the computationally expensive high-fidelity model to build a numerical framework that satisfies both accuracy and computational time expectations. The results of the presented multi-fidelity scheme show a significant improvement on the accuracy of the crystal plasticity modeling of Ti-7Al compared to the results of the previous low-fidelity solution.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf sg:journal.1136615
51 schema:name Crystal Plasticity Model Calibration for Ti-7Al Alloy with a Multi-fidelity Computational Scheme
52 schema:pagination 1-9
53 schema:productId N016600efb0184456b3555f09d78a8dfe
54 N32062a1d6b9246de930117e39c2f8a15
55 Nf958fea946824cf5b16a59fc17d73fd1
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110203723
57 https://doi.org/10.1007/s40192-018-0120-0
58 schema:sdDatePublished 2019-04-11T08:13
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N05504b33c9954362a559443c09580ebc
61 schema:url https://link.springer.com/10.1007%2Fs40192-018-0120-0
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N016600efb0184456b3555f09d78a8dfe schema:name dimensions_id
66 schema:value pub.1110203723
67 rdf:type schema:PropertyValue
68 N05504b33c9954362a559443c09580ebc schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N32062a1d6b9246de930117e39c2f8a15 schema:name doi
71 schema:value 10.1007/s40192-018-0120-0
72 rdf:type schema:PropertyValue
73 Nc7c8775795f24ff797a9e6791237daa0 rdf:first sg:person.013676530145.50
74 rdf:rest rdf:nil
75 Nf958fea946824cf5b16a59fc17d73fd1 schema:name readcube_id
76 schema:value 13c4ab5c0a8d1085a1972ec7bd049ebe0d24d212428a683f6a380456a59c528c
77 rdf:type schema:PropertyValue
78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information and Computing Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
82 schema:name Artificial Intelligence and Image Processing
83 rdf:type schema:DefinedTerm
84 sg:journal.1136615 schema:issn 2193-9764
85 2193-9772
86 schema:name Integrating Materials and Manufacturing Innovation
87 rdf:type schema:Periodical
88 sg:person.013676530145.50 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
89 schema:familyName Acar
90 schema:givenName Pınar
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013676530145.50
92 rdf:type schema:Person
93 sg:pub.10.1007/s00158-004-0506-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008012135
94 https://doi.org/10.1007/s00158-004-0506-9
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s00158-005-0587-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034003420
97 https://doi.org/10.1007/s00158-005-0587-0
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s11661-002-0153-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1039085372
100 https://doi.org/10.1007/s11661-002-0153-y
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s11837-006-0223-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022567830
103 https://doi.org/10.1007/s11837-006-0223-5
104 rdf:type schema:CreativeWork
105 sg:pub.10.1023/a:1016334108898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048429806
106 https://doi.org/10.1023/a:1016334108898
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/srep11551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038678083
109 https://doi.org/10.1038/srep11551
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0001-6160(85)90188-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015762795
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0022-5096(96)00001-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051353460
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0956-7151(93)90361-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1052591035
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/1359-6454(95)00309-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011961834
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.actamat.2004.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038553565
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.actamat.2015.09.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053443303
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.actamat.2015.12.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051357761
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.actamat.2016.10.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018613521
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.actamat.2017.02.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083918025
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.ijplas.2006.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045102915
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.ijplas.2016.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045145247
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.msea.2009.06.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010723037
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.scriptamat.2017.08.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091385951
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0065-2156(08)70320-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016739930
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0749-6419(03)00039-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004045314
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0749-6419(03)00092-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014581303
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1080/00401706.2013.838910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001411642
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1080/03052150600711190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009095385
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1098/rspa.2007.1900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018627228
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1098/rspa.2016.0751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083780806
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1098/rsta.1992.0111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008906385
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1098/rsta.2010.0051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049277711
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1107/s0021889888000275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010297987
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1137/120884122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062869669
158 rdf:type schema:CreativeWork
159 https://doi.org/10.2514/1.j050384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050523274
160 rdf:type schema:CreativeWork
161 https://doi.org/10.2514/1.j051391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018874065
162 rdf:type schema:CreativeWork
163 https://doi.org/10.2514/1.j052375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042345025
164 rdf:type schema:CreativeWork
165 https://doi.org/10.2514/1.j055247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032827295
166 rdf:type schema:CreativeWork
167 https://doi.org/10.2514/1.j055689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090532639
168 rdf:type schema:CreativeWork
169 https://doi.org/10.2514/6.1998-4855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038026742
170 rdf:type schema:CreativeWork
171 https://doi.org/10.2514/6.2008-2062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018107859
172 rdf:type schema:CreativeWork
173 https://doi.org/10.2514/6.2016-0156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040256650
174 rdf:type schema:CreativeWork
175 https://doi.org/10.2514/6.2017-1982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098496413
176 rdf:type schema:CreativeWork
177 https://doi.org/10.3390/met7110459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092411430
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.438526.e schema:alternateName Virginia Tech
180 schema:name Mechanical Engineering, Virginia Tech, 24061, Blacksburg, VA, USA
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...