An ICME Framework for Design of Stainless Steel for Sintering View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

Tesfaye T. Molla, J. Z. Liu, G. B. Schaffer

ABSTRACT

Recent progress in the development of integrated computational materials engineering (ICME) models offers new capabilities to deal with the challenge of designing multi-component alloys. In this study, a new type of computational method for efficient design of sintered stainless steel alloys, optimized for manufacturability (sintering) as well for performance, is presented. Development of the design method follows the materials systems approach that integrates processing, structure, and property relations during metal injection molding (MIM). It includes a multi-objective genetic algorithm (GA) to optimize alloy composition with the aim of improving the sintering as well as performance-related properties. To achieve this, the GA is coupled with computational thermodynamics and predictive analytical models. Thermodynamic simulations, based on the calculation of phase diagram CALPHAD method, are used to establish constraints through phase stability at equilibrium and calculate the diffusivity that determines the sintering behavior of the alloy. In addition, an advanced predictive model is used to determine solution strengthening. To demonstrate the capability of our method, a design exercise for austenitic stainless steel is presented. New alloys which are optimized for improved sinterability, yield strength, corrosion resistance, and cost are compared to 316L, a commercially available austenitic steel that is widely produced by MIM. More... »

PAGES

136-147

References to SciGraph publications

  • 2017-09. A Computational Framework for Material Design in INTEGRATING MATERIALS AND MANUFACTURING INNOVATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40192-018-0115-x

    DOI

    http://dx.doi.org/10.1007/s40192-018-0115-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105777846


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Melbourne", 
              "id": "https://www.grid.ac/institutes/grid.1008.9", 
              "name": [
                "Department of Mechanical Engineering, The University of Melbourne, Parkville Campus, Building 166, 3010, Melbourne, Victoria, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Molla", 
            "givenName": "Tesfaye T.", 
            "id": "sg:person.014305060671.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014305060671.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Melbourne", 
              "id": "https://www.grid.ac/institutes/grid.1008.9", 
              "name": [
                "Department of Mechanical Engineering, The University of Melbourne, Parkville Campus, Building 166, 3010, Melbourne, Victoria, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "J. Z.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Melbourne", 
              "id": "https://www.grid.ac/institutes/grid.1008.9", 
              "name": [
                "Department of Mechanical Engineering, The University of Melbourne, Parkville Campus, Building 166, 3010, Melbourne, Victoria, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schaffer", 
            "givenName": "G. B.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ijrmhm.2010.05.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002911747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2320/matertrans.43.155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005483595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10426914.2014.984203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005583741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2355/isijinternational.34.764", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007818066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0965-0393/21/4/045013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007978065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcp.2016.10.070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009394875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcp.2016.10.070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009394875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcp.2016.10.070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009394875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcp.2016.10.070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009394875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jlp.2015.06.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012118373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-6160(61)90242-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012147017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-6160(61)90242-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012147017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10408436.2010.525197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028822235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pssb.19700410221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029649201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/026708303225009788", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030119670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2006.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033498332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/026708303225009797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035077342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.conbuildmat.2012.11.072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040258374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2006.04.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042338962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1081/amp-200053580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046403233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1081/amp-200053580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046403233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0927-796x(98)00009-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050749812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1722140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057789138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0508-3443/15/12/318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059097259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0965-0393/24/5/055001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059121713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.277.5330.1237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062557816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.msea.2017.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085860592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40192-017-0101-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091409538", 
              "https://doi.org/10.1007/s40192-017-0101-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-09", 
        "datePublishedReg": "2018-09-01", 
        "description": "Recent progress in the development of integrated computational materials engineering (ICME) models offers new capabilities to deal with the challenge of designing multi-component alloys. In this study, a new type of computational method for efficient design of sintered stainless steel alloys, optimized for manufacturability (sintering) as well for performance, is presented. Development of the design method follows the materials systems approach that integrates processing, structure, and property relations during metal injection molding (MIM). It includes a multi-objective genetic algorithm (GA) to optimize alloy composition with the aim of improving the sintering as well as performance-related properties. To achieve this, the GA is coupled with computational thermodynamics and predictive analytical models. Thermodynamic simulations, based on the calculation of phase diagram CALPHAD method, are used to establish constraints through phase stability at equilibrium and calculate the diffusivity that determines the sintering behavior of the alloy. In addition, an advanced predictive model is used to determine solution strengthening. To demonstrate the capability of our method, a design exercise for austenitic stainless steel is presented. New alloys which are optimized for improved sinterability, yield strength, corrosion resistance, and cost are compared to 316L, a commercially available austenitic steel that is widely produced by MIM.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s40192-018-0115-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136615", 
            "issn": [
              "2193-9764", 
              "2193-9772"
            ], 
            "name": "Integrating Materials and Manufacturing Innovation", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "An ICME Framework for Design of Stainless Steel for Sintering", 
        "pagination": "136-147", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c0f00da3c4eb0e9d9f9183349e431970fa3f081feb95226be7cad5b303cd7d46"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40192-018-0115-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105777846"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40192-018-0115-x", 
          "https://app.dimensions.ai/details/publication/pub.1105777846"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000604.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s40192-018-0115-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40192-018-0115-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40192-018-0115-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40192-018-0115-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40192-018-0115-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    143 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40192-018-0115-x schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nd32645031da0425bb0b9fe757c72bb37
    4 schema:citation sg:pub.10.1007/s40192-017-0101-8
    5 https://doi.org/10.1002/pssb.19700410221
    6 https://doi.org/10.1016/0001-6160(61)90242-5
    7 https://doi.org/10.1016/j.actamat.2006.04.013
    8 https://doi.org/10.1016/j.conbuildmat.2012.11.072
    9 https://doi.org/10.1016/j.ejor.2006.08.002
    10 https://doi.org/10.1016/j.ijrmhm.2010.05.010
    11 https://doi.org/10.1016/j.jcp.2016.10.070
    12 https://doi.org/10.1016/j.jlp.2015.06.008
    13 https://doi.org/10.1016/j.msea.2017.06.001
    14 https://doi.org/10.1016/s0927-796x(98)00009-6
    15 https://doi.org/10.1063/1.1722140
    16 https://doi.org/10.1080/10408436.2010.525197
    17 https://doi.org/10.1080/10426914.2014.984203
    18 https://doi.org/10.1081/amp-200053580
    19 https://doi.org/10.1088/0508-3443/15/12/318
    20 https://doi.org/10.1088/0965-0393/21/4/045013
    21 https://doi.org/10.1088/0965-0393/24/5/055001
    22 https://doi.org/10.1126/science.277.5330.1237
    23 https://doi.org/10.1179/026708303225009788
    24 https://doi.org/10.1179/026708303225009797
    25 https://doi.org/10.2320/matertrans.43.155
    26 https://doi.org/10.2355/isijinternational.34.764
    27 schema:datePublished 2018-09
    28 schema:datePublishedReg 2018-09-01
    29 schema:description Recent progress in the development of integrated computational materials engineering (ICME) models offers new capabilities to deal with the challenge of designing multi-component alloys. In this study, a new type of computational method for efficient design of sintered stainless steel alloys, optimized for manufacturability (sintering) as well for performance, is presented. Development of the design method follows the materials systems approach that integrates processing, structure, and property relations during metal injection molding (MIM). It includes a multi-objective genetic algorithm (GA) to optimize alloy composition with the aim of improving the sintering as well as performance-related properties. To achieve this, the GA is coupled with computational thermodynamics and predictive analytical models. Thermodynamic simulations, based on the calculation of phase diagram CALPHAD method, are used to establish constraints through phase stability at equilibrium and calculate the diffusivity that determines the sintering behavior of the alloy. In addition, an advanced predictive model is used to determine solution strengthening. To demonstrate the capability of our method, a design exercise for austenitic stainless steel is presented. New alloys which are optimized for improved sinterability, yield strength, corrosion resistance, and cost are compared to 316L, a commercially available austenitic steel that is widely produced by MIM.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N86b5d021ea3f46609fc2dac5cc35cc6f
    34 Nccd6243add51423cb92973b309790abb
    35 sg:journal.1136615
    36 schema:name An ICME Framework for Design of Stainless Steel for Sintering
    37 schema:pagination 136-147
    38 schema:productId N17cc8f4196c44b1aa1cda3a9c46703ad
    39 N1e270482f6b7445f81c335b3704ff378
    40 N6f82988d608f4060a5f5841c79a9220f
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105777846
    42 https://doi.org/10.1007/s40192-018-0115-x
    43 schema:sdDatePublished 2019-04-10T16:05
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher N50a337b86c31477b90d86107ab71ad73
    46 schema:url http://link.springer.com/10.1007/s40192-018-0115-x
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N0a2477d6687e49a1b590b39c2ca94dc4 rdf:first N7be4537b421447edb47877bfd27f2cf3
    51 rdf:rest rdf:nil
    52 N17cc8f4196c44b1aa1cda3a9c46703ad schema:name dimensions_id
    53 schema:value pub.1105777846
    54 rdf:type schema:PropertyValue
    55 N1e270482f6b7445f81c335b3704ff378 schema:name readcube_id
    56 schema:value c0f00da3c4eb0e9d9f9183349e431970fa3f081feb95226be7cad5b303cd7d46
    57 rdf:type schema:PropertyValue
    58 N2fc80302b1054cb0b95411cf0a6844ca rdf:first N4fbb016cb1184454b670aec5702c84ed
    59 rdf:rest N0a2477d6687e49a1b590b39c2ca94dc4
    60 N4fbb016cb1184454b670aec5702c84ed schema:affiliation https://www.grid.ac/institutes/grid.1008.9
    61 schema:familyName Liu
    62 schema:givenName J. Z.
    63 rdf:type schema:Person
    64 N50a337b86c31477b90d86107ab71ad73 schema:name Springer Nature - SN SciGraph project
    65 rdf:type schema:Organization
    66 N6f82988d608f4060a5f5841c79a9220f schema:name doi
    67 schema:value 10.1007/s40192-018-0115-x
    68 rdf:type schema:PropertyValue
    69 N7be4537b421447edb47877bfd27f2cf3 schema:affiliation https://www.grid.ac/institutes/grid.1008.9
    70 schema:familyName Schaffer
    71 schema:givenName G. B.
    72 rdf:type schema:Person
    73 N86b5d021ea3f46609fc2dac5cc35cc6f schema:volumeNumber 7
    74 rdf:type schema:PublicationVolume
    75 Nccd6243add51423cb92973b309790abb schema:issueNumber 3
    76 rdf:type schema:PublicationIssue
    77 Nd32645031da0425bb0b9fe757c72bb37 rdf:first sg:person.014305060671.47
    78 rdf:rest N2fc80302b1054cb0b95411cf0a6844ca
    79 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Engineering
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Materials Engineering
    84 rdf:type schema:DefinedTerm
    85 sg:journal.1136615 schema:issn 2193-9764
    86 2193-9772
    87 schema:name Integrating Materials and Manufacturing Innovation
    88 rdf:type schema:Periodical
    89 sg:person.014305060671.47 schema:affiliation https://www.grid.ac/institutes/grid.1008.9
    90 schema:familyName Molla
    91 schema:givenName Tesfaye T.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014305060671.47
    93 rdf:type schema:Person
    94 sg:pub.10.1007/s40192-017-0101-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091409538
    95 https://doi.org/10.1007/s40192-017-0101-8
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1002/pssb.19700410221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029649201
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/0001-6160(61)90242-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012147017
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/j.actamat.2006.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042338962
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/j.conbuildmat.2012.11.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040258374
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/j.ejor.2006.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033498332
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/j.ijrmhm.2010.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002911747
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/j.jcp.2016.10.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009394875
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.jlp.2015.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012118373
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/j.msea.2017.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085860592
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/s0927-796x(98)00009-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050749812
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1063/1.1722140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057789138
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1080/10408436.2010.525197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028822235
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1080/10426914.2014.984203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005583741
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1081/amp-200053580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046403233
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1088/0508-3443/15/12/318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059097259
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1088/0965-0393/21/4/045013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007978065
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1088/0965-0393/24/5/055001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059121713
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1126/science.277.5330.1237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062557816
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1179/026708303225009788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030119670
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1179/026708303225009797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035077342
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.2320/matertrans.43.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005483595
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.2355/isijinternational.34.764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007818066
    140 rdf:type schema:CreativeWork
    141 https://www.grid.ac/institutes/grid.1008.9 schema:alternateName University of Melbourne
    142 schema:name Department of Mechanical Engineering, The University of Melbourne, Parkville Campus, Building 166, 3010, Melbourne, Victoria, Australia
    143 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...