Reduced-Order Microstructure-Sensitive Models for Damage Initiation in Two-Phase Composites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

David Montes de Oca Zapiain, Evdokia Popova, Fadi Abdeljawad, James W. Foulk, Surya R. Kalidindi, Hojun Lim

ABSTRACT

Local features of the internal structure or the microstructure dominate the overall performance of materials. An open problem in materials design with enhanced properties is to accurately identify and quantify salient features of the microstructure and understand its correlation with the material’s performance. This task is exacerbated when dealing with failure related properties that show strong correlations to higher-order details of the material microstructure. This paper presents a novel data-driven framework for quantitatively determining the highly complex correlations that exist between the higher-order details of the material microstructure and its failure-related properties, specifically its damage initiation properties. The enclosed work will address this challenge by significantly extending the Materials Knowledge Systems (MKS) framework and by leveraging concepts in extreme value distributions and machine learning. The developed framework was capable of successfully sorting nine different classes of synthetically generated two-phase microstructures for their sensitivity to damage initiation. The framework and approaches presented here open new research avenues for studying the microstructure-sensitive damage initiation properties associated with heterogeneous materials, and pave the way forward for practical multiscale materials design. More... »

PAGES

97-115

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40192-018-0112-0

DOI

http://dx.doi.org/10.1007/s40192-018-0112-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105177953


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 30332, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Montes de Oca Zapiain", 
        "givenName": "David", 
        "id": "sg:person.013660667724.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013660667724.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 30332, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popova", 
        "givenName": "Evdokia", 
        "id": "sg:person.010616742777.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010616742777.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sandia National Laboratories", 
          "id": "https://www.grid.ac/institutes/grid.474520.0", 
          "name": [
            "Sandia National Laboratories, MS-1411, PO Box 5800, 87185, Albuquerque, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abdeljawad", 
        "givenName": "Fadi", 
        "id": "sg:person.015377532531.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015377532531.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sandia National Laboratories California", 
          "id": "https://www.grid.ac/institutes/grid.474523.3", 
          "name": [
            "Sandia National Laboratories, MS-9042, PO Box 969, 94551, Livermore, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Foulk", 
        "givenName": "James W.", 
        "id": "sg:person.013666115320.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013666115320.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 30332, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalidindi", 
        "givenName": "Surya R.", 
        "id": "sg:person.0701470370.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701470370.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sandia National Laboratories", 
          "id": "https://www.grid.ac/institutes/grid.474520.0", 
          "name": [
            "Sandia National Laboratories, MS-1411, PO Box 5800, 87185, Albuquerque, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Hojun", 
        "id": "sg:person.012747277657.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012747277657.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11837-011-0057-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000354578", 
          "https://doi.org/10.1007/s11837-011-0057-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ma6062543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000906451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-7683(00)00391-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001767483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-3675-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001789312", 
          "https://doi.org/10.1007/978-1-4471-3675-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-3675-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001789312", 
          "https://doi.org/10.1007/978-1-4471-3675-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2008.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001947532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-716x(93)90535-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004069279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-716x(93)90535-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004069279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2013.06.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005816020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2012.03.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009645899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-1765(03)00035-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011169268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-1765(03)00035-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011169268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7403(90)90148-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014876348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7403(90)90148-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014876348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2015.02.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015211689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5096(84)90031-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015631910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5096(84)90031-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015631910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(98)01011-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016097584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmecsci.2004.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016799937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mechmat.2008.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018670064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engfracmech.2006.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019306509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00188939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019698379", 
          "https://doi.org/10.1007/bf00188939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.49708134804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020340246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engfracmech.2007.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021961893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(97)00059-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024038577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-7944(77)90062-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024938482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-7944(77)90062-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024938482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(03)00043-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025927865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(03)00043-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025927865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-1431-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026885327", 
          "https://doi.org/10.1007/978-94-017-1431-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-1431-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026885327", 
          "https://doi.org/10.1007/978-94-017-1431-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(97)00289-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030366832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5096(69)90033-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031528860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5096(69)90033-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031528860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-04898-2_246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033886954", 
          "https://doi.org/10.1007/978-3-642-04898-2_246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1359-6454(95)00172-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034030933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2011.06.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034679351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-011-0045-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035857490", 
          "https://doi.org/10.1007/s11837-011-0045-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/1999wr900330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036276372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6425(98)00002-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036376481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2481/dsj.1.19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038226124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(91)90146-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041416976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(91)90146-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041416976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1359-6454(95)00171-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044016341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1359-6454(96)00008-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044243975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10820-008-9100-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045254943", 
          "https://doi.org/10.1007/s10820-008-9100-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(84)90213-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046343488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(84)90213-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046343488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-4181-6_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049360349", 
          "https://doi.org/10.1007/978-94-009-4181-6_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2193-9772-2-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051353116", 
          "https://doi.org/10.1186/2193-9772-2-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijsolstr.2006.12.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052452071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3443401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062124582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3601204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062132539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.277.5330.1237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062557816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40192-017-0093-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084038379", 
          "https://doi.org/10.1007/s40192-017-0093-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40192-017-0093-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084038379", 
          "https://doi.org/10.1007/s40192-017-0093-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084055680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084055680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084055680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2017.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086024729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2347483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101982960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2347483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101982960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2991/978-94-6239-222-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108912621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2991/978-94-6239-222-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108912621", 
          "https://doi.org/10.2991/978-94-6239-222-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "Local features of the internal structure or the microstructure dominate the overall performance of materials. An open problem in materials design with enhanced properties is to accurately identify and quantify salient features of the microstructure and understand its correlation with the material\u2019s performance. This task is exacerbated when dealing with failure related properties that show strong correlations to higher-order details of the material microstructure. This paper presents a novel data-driven framework for quantitatively determining the highly complex correlations that exist between the higher-order details of the material microstructure and its failure-related properties, specifically its damage initiation properties. The enclosed work will address this challenge by significantly extending the Materials Knowledge Systems (MKS) framework and by leveraging concepts in extreme value distributions and machine learning. The developed framework was capable of successfully sorting nine different classes of synthetically generated two-phase microstructures for their sensitivity to damage initiation. The framework and approaches presented here open new research avenues for studying the microstructure-sensitive damage initiation properties associated with heterogeneous materials, and pave the way forward for practical multiscale materials design.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40192-018-0112-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136615", 
        "issn": [
          "2193-9764", 
          "2193-9772"
        ], 
        "name": "Integrating Materials and Manufacturing Innovation", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Reduced-Order Microstructure-Sensitive Models for Damage Initiation in Two-Phase Composites", 
    "pagination": "97-115", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e79b631f2119fe2956654059796f72a3b4fe58a4c5648a34f5b9ecda311faa51"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40192-018-0112-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105177953"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40192-018-0112-0", 
      "https://app.dimensions.ai/details/publication/pub.1105177953"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s40192-018-0112-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40192-018-0112-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40192-018-0112-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40192-018-0112-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40192-018-0112-0'


 

This table displays all metadata directly associated to this object as RDF triples.

260 TRIPLES      21 PREDICATES      76 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40192-018-0112-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N595eb9dd5e1647eca67307436286bc9b
4 schema:citation sg:pub.10.1007/978-1-4471-3675-0
5 sg:pub.10.1007/978-3-642-04898-2_246
6 sg:pub.10.1007/978-94-009-4181-6_8
7 sg:pub.10.1007/978-94-017-1431-0
8 sg:pub.10.1007/bf00188939
9 sg:pub.10.1007/s10820-008-9100-6
10 sg:pub.10.1007/s11837-011-0045-y
11 sg:pub.10.1007/s11837-011-0057-7
12 sg:pub.10.1007/s40192-017-0093-4
13 sg:pub.10.1186/2193-9772-2-3
14 sg:pub.10.2991/978-94-6239-222-9
15 https://doi.org/10.1002/qj.49708134804
16 https://doi.org/10.1016/0001-6160(84)90213-x
17 https://doi.org/10.1016/0013-7944(77)90062-5
18 https://doi.org/10.1016/0020-7403(90)90148-c
19 https://doi.org/10.1016/0022-5096(69)90033-7
20 https://doi.org/10.1016/0022-5096(84)90031-0
21 https://doi.org/10.1016/0956-7151(91)90146-r
22 https://doi.org/10.1016/0956-716x(93)90535-z
23 https://doi.org/10.1016/1359-6454(95)00171-6
24 https://doi.org/10.1016/1359-6454(95)00172-8
25 https://doi.org/10.1016/1359-6454(96)00008-0
26 https://doi.org/10.1016/j.actamat.2008.07.005
27 https://doi.org/10.1016/j.actamat.2011.06.051
28 https://doi.org/10.1016/j.actamat.2015.02.045
29 https://doi.org/10.1016/j.actamat.2017.03.009
30 https://doi.org/10.1016/j.commatsci.2012.03.033
31 https://doi.org/10.1016/j.engfracmech.2006.08.002
32 https://doi.org/10.1016/j.engfracmech.2007.08.012
33 https://doi.org/10.1016/j.ijmecsci.2004.02.006
34 https://doi.org/10.1016/j.ijsolstr.2006.12.026
35 https://doi.org/10.1016/j.jcp.2017.06.013
36 https://doi.org/10.1016/j.jpowsour.2013.06.100
37 https://doi.org/10.1016/j.mechmat.2008.03.004
38 https://doi.org/10.1016/s0020-7683(00)00391-7
39 https://doi.org/10.1016/s0079-6425(98)00002-4
40 https://doi.org/10.1016/s0165-1765(03)00035-1
41 https://doi.org/10.1016/s0921-5093(97)00059-2
42 https://doi.org/10.1016/s0921-5093(98)01011-9
43 https://doi.org/10.1016/s1359-6454(03)00043-0
44 https://doi.org/10.1016/s1359-6454(97)00289-9
45 https://doi.org/10.1029/1999wr900330
46 https://doi.org/10.1115/1.3443401
47 https://doi.org/10.1115/1.3601204
48 https://doi.org/10.1126/science.277.5330.1237
49 https://doi.org/10.2307/2347483
50 https://doi.org/10.2481/dsj.1.19
51 https://doi.org/10.2991/978-94-6239-222-9
52 https://doi.org/10.3390/ma6062543
53 schema:datePublished 2018-09
54 schema:datePublishedReg 2018-09-01
55 schema:description Local features of the internal structure or the microstructure dominate the overall performance of materials. An open problem in materials design with enhanced properties is to accurately identify and quantify salient features of the microstructure and understand its correlation with the material’s performance. This task is exacerbated when dealing with failure related properties that show strong correlations to higher-order details of the material microstructure. This paper presents a novel data-driven framework for quantitatively determining the highly complex correlations that exist between the higher-order details of the material microstructure and its failure-related properties, specifically its damage initiation properties. The enclosed work will address this challenge by significantly extending the Materials Knowledge Systems (MKS) framework and by leveraging concepts in extreme value distributions and machine learning. The developed framework was capable of successfully sorting nine different classes of synthetically generated two-phase microstructures for their sensitivity to damage initiation. The framework and approaches presented here open new research avenues for studying the microstructure-sensitive damage initiation properties associated with heterogeneous materials, and pave the way forward for practical multiscale materials design.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree false
59 schema:isPartOf N9d5b764c9989411a82ab4a6acc8d577f
60 Na19bd68ee3c243f7863a3d39b879b25f
61 sg:journal.1136615
62 schema:name Reduced-Order Microstructure-Sensitive Models for Damage Initiation in Two-Phase Composites
63 schema:pagination 97-115
64 schema:productId N7cb7129e29ab435bbf1f4e0556878f48
65 N8e32f72873cb419c8fb17c8fe428ce00
66 Na67abb49007248adaf043eb98ffdbf23
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105177953
68 https://doi.org/10.1007/s40192-018-0112-0
69 schema:sdDatePublished 2019-04-10T14:24
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N80485b0f801547e2a4bc7b485d708dc1
72 schema:url http://link.springer.com/10.1007/s40192-018-0112-0
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N338eba524fec455f81093480620a8b30 rdf:first sg:person.013666115320.40
77 rdf:rest Naeba406d6e124ee68098d16d903ed061
78 N4e3d818ca4594748b206044894e7e8ad rdf:first sg:person.010616742777.43
79 rdf:rest Nf9fe972a0147472cac5b9ff742101326
80 N595eb9dd5e1647eca67307436286bc9b rdf:first sg:person.013660667724.70
81 rdf:rest N4e3d818ca4594748b206044894e7e8ad
82 N7cb7129e29ab435bbf1f4e0556878f48 schema:name dimensions_id
83 schema:value pub.1105177953
84 rdf:type schema:PropertyValue
85 N80485b0f801547e2a4bc7b485d708dc1 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N8e32f72873cb419c8fb17c8fe428ce00 schema:name doi
88 schema:value 10.1007/s40192-018-0112-0
89 rdf:type schema:PropertyValue
90 N9d5b764c9989411a82ab4a6acc8d577f schema:volumeNumber 7
91 rdf:type schema:PublicationVolume
92 Na19bd68ee3c243f7863a3d39b879b25f schema:issueNumber 3
93 rdf:type schema:PublicationIssue
94 Na67abb49007248adaf043eb98ffdbf23 schema:name readcube_id
95 schema:value e79b631f2119fe2956654059796f72a3b4fe58a4c5648a34f5b9ecda311faa51
96 rdf:type schema:PropertyValue
97 Nace813b09efc4aca84bfeb765a3fabb9 rdf:first sg:person.012747277657.28
98 rdf:rest rdf:nil
99 Naeba406d6e124ee68098d16d903ed061 rdf:first sg:person.0701470370.39
100 rdf:rest Nace813b09efc4aca84bfeb765a3fabb9
101 Nf9fe972a0147472cac5b9ff742101326 rdf:first sg:person.015377532531.32
102 rdf:rest N338eba524fec455f81093480620a8b30
103 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
104 schema:name Engineering
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
107 schema:name Materials Engineering
108 rdf:type schema:DefinedTerm
109 sg:journal.1136615 schema:issn 2193-9764
110 2193-9772
111 schema:name Integrating Materials and Manufacturing Innovation
112 rdf:type schema:Periodical
113 sg:person.010616742777.43 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
114 schema:familyName Popova
115 schema:givenName Evdokia
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010616742777.43
117 rdf:type schema:Person
118 sg:person.012747277657.28 schema:affiliation https://www.grid.ac/institutes/grid.474520.0
119 schema:familyName Lim
120 schema:givenName Hojun
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012747277657.28
122 rdf:type schema:Person
123 sg:person.013660667724.70 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
124 schema:familyName Montes de Oca Zapiain
125 schema:givenName David
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013660667724.70
127 rdf:type schema:Person
128 sg:person.013666115320.40 schema:affiliation https://www.grid.ac/institutes/grid.474523.3
129 schema:familyName Foulk
130 schema:givenName James W.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013666115320.40
132 rdf:type schema:Person
133 sg:person.015377532531.32 schema:affiliation https://www.grid.ac/institutes/grid.474520.0
134 schema:familyName Abdeljawad
135 schema:givenName Fadi
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015377532531.32
137 rdf:type schema:Person
138 sg:person.0701470370.39 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
139 schema:familyName Kalidindi
140 schema:givenName Surya R.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701470370.39
142 rdf:type schema:Person
143 sg:pub.10.1007/978-1-4471-3675-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001789312
144 https://doi.org/10.1007/978-1-4471-3675-0
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/978-3-642-04898-2_246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033886954
147 https://doi.org/10.1007/978-3-642-04898-2_246
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/978-94-009-4181-6_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049360349
150 https://doi.org/10.1007/978-94-009-4181-6_8
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/978-94-017-1431-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026885327
153 https://doi.org/10.1007/978-94-017-1431-0
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/bf00188939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019698379
156 https://doi.org/10.1007/bf00188939
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s10820-008-9100-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045254943
159 https://doi.org/10.1007/s10820-008-9100-6
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s11837-011-0045-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1035857490
162 https://doi.org/10.1007/s11837-011-0045-y
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s11837-011-0057-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000354578
165 https://doi.org/10.1007/s11837-011-0057-7
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s40192-017-0093-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084038379
168 https://doi.org/10.1007/s40192-017-0093-4
169 rdf:type schema:CreativeWork
170 sg:pub.10.1186/2193-9772-2-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051353116
171 https://doi.org/10.1186/2193-9772-2-3
172 rdf:type schema:CreativeWork
173 sg:pub.10.2991/978-94-6239-222-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108912621
174 https://doi.org/10.2991/978-94-6239-222-9
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/qj.49708134804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020340246
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/0001-6160(84)90213-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046343488
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/0013-7944(77)90062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024938482
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/0020-7403(90)90148-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1014876348
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/0022-5096(69)90033-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031528860
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/0022-5096(84)90031-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015631910
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/0956-7151(91)90146-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1041416976
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/0956-716x(93)90535-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1004069279
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/1359-6454(95)00171-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044016341
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/1359-6454(95)00172-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034030933
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/1359-6454(96)00008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044243975
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.actamat.2008.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001947532
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.actamat.2011.06.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034679351
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.actamat.2015.02.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015211689
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.actamat.2017.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084055680
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.commatsci.2012.03.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009645899
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.engfracmech.2006.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019306509
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.engfracmech.2007.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021961893
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.ijmecsci.2004.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016799937
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.ijsolstr.2006.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052452071
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.jcp.2017.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086024729
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.jpowsour.2013.06.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005816020
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.mechmat.2008.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018670064
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/s0020-7683(00)00391-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001767483
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/s0079-6425(98)00002-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036376481
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/s0165-1765(03)00035-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011169268
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/s0921-5093(97)00059-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024038577
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/s0921-5093(98)01011-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016097584
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/s1359-6454(03)00043-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025927865
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/s1359-6454(97)00289-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030366832
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1029/1999wr900330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036276372
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1115/1.3443401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062124582
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1115/1.3601204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062132539
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1126/science.277.5330.1237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062557816
243 rdf:type schema:CreativeWork
244 https://doi.org/10.2307/2347483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101982960
245 rdf:type schema:CreativeWork
246 https://doi.org/10.2481/dsj.1.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038226124
247 rdf:type schema:CreativeWork
248 https://doi.org/10.2991/978-94-6239-222-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108912621
249 rdf:type schema:CreativeWork
250 https://doi.org/10.3390/ma6062543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000906451
251 rdf:type schema:CreativeWork
252 https://www.grid.ac/institutes/grid.213917.f schema:alternateName Georgia Institute of Technology
253 schema:name Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 30332, Atlanta, GA, USA
254 rdf:type schema:Organization
255 https://www.grid.ac/institutes/grid.474520.0 schema:alternateName Sandia National Laboratories
256 schema:name Sandia National Laboratories, MS-1411, PO Box 5800, 87185, Albuquerque, NM, USA
257 rdf:type schema:Organization
258 https://www.grid.ac/institutes/grid.474523.3 schema:alternateName Sandia National Laboratories California
259 schema:name Sandia National Laboratories, MS-9042, PO Box 969, 94551, Livermore, CA, USA
260 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...