Additive manufacturing of thin electrolyte layers via inkjet printing of highly-stable ceramic inks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-02-10

AUTHORS

Zhongqi Zhu, Zhiyuan Gong, Piao Qu, Ziyong Li, Sefiu Abolaji Rasaki, Zhiyuan Liu, Pei Wang, Changyong Liu, Changshi Lao, Zhangwei Chen

ABSTRACT

Inkjet printing is a promising alternative for the fabrication of thin film components for solid oxide fuel cells (SOFCs) due to its contactless, mask free, and controllable printing process. In order to obtain satisfying electrolyte thin layer structures in anode-supported SOFCs, the preparation of suitable electrolyte ceramic inks is a key. At present, such a kind of 8 mol% Y2O3-stabilized ZrO2 (8YSZ) electrolyte ceramic ink with long-term stability and high solid loading (> 15 wt%) seems rare for precise inkjet printing, and a number of characterization and performance aspects of the inks, such as homogeneity, viscosity, and printability, should be studied. In this study, 8YSZ ceramic inks of varied compositions were developed for inkjet printing of SOFC ceramic electrolyte layers. The dispersing effect of two types of dispersants, i.e., polyacrylic acid ammonium (PAANH4) and polyacrylic acid (PAA), were compared. The results show that ultrasonic dispersion treatment can help effectively disperse the ceramic particles in the inks. PAANH4 has a better dispersion effect for the inks developed in this study. The inks show excellent printable performance in the actual printing process. The stability of the ink can be maintained for a storage period of over 30 days with the help of initial ultrasonic dispersion. Finally, micron-size thin 8YSZ electrolyte films were successfully fabricated through inkjet printing and sintering, based on the as-developed high solid loading 8YSZ inks (20 wt%). The films show fully dense and intact structural morphology and smooth interfacial bonding, offering an improved structural quality of electrolyte for enhanced SOFC performance. More... »

PAGES

279-290

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40145-020-0439-9

DOI

http://dx.doi.org/10.1007/s40145-020-0439-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1135293537


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China", 
          "id": "http://www.grid.ac/institutes/grid.263488.3", 
          "name": [
            "Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Zhongqi", 
        "id": "sg:person.013246770111.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013246770111.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China", 
          "id": "http://www.grid.ac/institutes/grid.263488.3", 
          "name": [
            "Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gong", 
        "givenName": "Zhiyuan", 
        "id": "sg:person.011654027111.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011654027111.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China", 
          "id": "http://www.grid.ac/institutes/grid.263488.3", 
          "name": [
            "Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qu", 
        "givenName": "Piao", 
        "id": "sg:person.014044350511.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014044350511.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China", 
          "id": "http://www.grid.ac/institutes/grid.263488.3", 
          "name": [
            "Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Ziyong", 
        "id": "sg:person.012175145157.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012175145157.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China", 
          "id": "http://www.grid.ac/institutes/grid.263488.3", 
          "name": [
            "Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rasaki", 
        "givenName": "Sefiu Abolaji", 
        "id": "sg:person.013571424410.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013571424410.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China", 
          "id": "http://www.grid.ac/institutes/grid.263488.3", 
          "name": [
            "Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Zhiyuan", 
        "id": "sg:person.01022617373.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022617373.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China", 
          "id": "http://www.grid.ac/institutes/grid.263488.3", 
          "name": [
            "Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Pei", 
        "id": "sg:person.010776356266.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010776356266.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China", 
          "id": "http://www.grid.ac/institutes/grid.263488.3", 
          "name": [
            "Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Changyong", 
        "id": "sg:person.016603513321.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016603513321.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China", 
          "id": "http://www.grid.ac/institutes/grid.263488.3", 
          "name": [
            "Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lao", 
        "givenName": "Changshi", 
        "id": "sg:person.01131426557.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131426557.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China", 
          "id": "http://www.grid.ac/institutes/grid.263488.3", 
          "name": [
            "Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Zhangwei", 
        "id": "sg:person.015073741477.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015073741477.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s40145-018-0294-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110227287", 
          "https://doi.org/10.1007/s40145-018-0294-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/mrs2003.230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067968369", 
          "https://doi.org/10.1557/mrs2003.230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/proc-625-117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067949086", 
          "https://doi.org/10.1557/proc-625-117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-005-3659-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020745289", 
          "https://doi.org/10.1007/s10853-005-3659-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40145-018-0282-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110065530", 
          "https://doi.org/10.1007/s40145-018-0282-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-02-10", 
    "datePublishedReg": "2021-02-10", 
    "description": "Inkjet printing is a promising alternative for the fabrication of thin film components for solid oxide fuel cells (SOFCs) due to its contactless, mask free, and controllable printing process. In order to obtain satisfying electrolyte thin layer structures in anode-supported SOFCs, the preparation of suitable electrolyte ceramic inks is a key. At present, such a kind of 8 mol% Y2O3-stabilized ZrO2 (8YSZ) electrolyte ceramic ink with long-term stability and high solid loading (> 15 wt%) seems rare for precise inkjet printing, and a number of characterization and performance aspects of the inks, such as homogeneity, viscosity, and printability, should be studied. In this study, 8YSZ ceramic inks of varied compositions were developed for inkjet printing of SOFC ceramic electrolyte layers. The dispersing effect of two types of dispersants, i.e., polyacrylic acid ammonium (PAANH4) and polyacrylic acid (PAA), were compared. The results show that ultrasonic dispersion treatment can help effectively disperse the ceramic particles in the inks. PAANH4 has a better dispersion effect for the inks developed in this study. The inks show excellent printable performance in the actual printing process. The stability of the ink can be maintained for a storage period of over 30 days with the help of initial ultrasonic dispersion. Finally, micron-size thin 8YSZ electrolyte films were successfully fabricated through inkjet printing and sintering, based on the as-developed high solid loading 8YSZ inks (20 wt%). The films show fully dense and intact structural morphology and smooth interfacial bonding, offering an improved structural quality of electrolyte for enhanced SOFC performance.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40145-020-0439-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8939202", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1135863", 
        "issn": [
          "2226-4108", 
          "2227-8508"
        ], 
        "name": "Journal of Advanced Ceramics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "solid oxide fuel cells", 
      "inkjet printing", 
      "ceramic ink", 
      "electrolyte layer", 
      "polyacrylic acid", 
      "oxide fuel cells", 
      "printing process", 
      "thin electrolyte layer", 
      "ultrasonic dispersion treatment", 
      "type of dispersant", 
      "long-term stability", 
      "electrolyte films", 
      "high solid loading", 
      "good dispersion effect", 
      "SOFC performance", 
      "actual printing process", 
      "thin film components", 
      "thin layer structure", 
      "fuel cells", 
      "improved structural quality", 
      "ultrasonic dispersion", 
      "ceramic particles", 
      "structural morphology", 
      "interfacial bonding", 
      "additive manufacturing", 
      "solid loading", 
      "film components", 
      "ink", 
      "layer structure", 
      "dispersion treatment", 
      "varied composition", 
      "printing", 
      "structural quality", 
      "acid ammonium", 
      "promising alternative", 
      "films", 
      "electrolyte", 
      "stability", 
      "dispersion effects", 
      "anode", 
      "layer", 
      "bonding", 
      "dispersant", 
      "performance aspects", 
      "ZrO2", 
      "sintering", 
      "printability", 
      "fabrication", 
      "preparation", 
      "Y2O3", 
      "performance", 
      "contactless", 
      "loading", 
      "manufacturing", 
      "characterization", 
      "acid", 
      "dispersion", 
      "ammonium", 
      "morphology", 
      "viscosity", 
      "particles", 
      "structure", 
      "storage period", 
      "process", 
      "composition", 
      "homogeneity", 
      "effect", 
      "order", 
      "components", 
      "kind", 
      "alternative", 
      "results", 
      "help", 
      "study", 
      "quality", 
      "types", 
      "cells", 
      "number of characterizations", 
      "key", 
      "number", 
      "aspects", 
      "treatment", 
      "period", 
      "days"
    ], 
    "name": "Additive manufacturing of thin electrolyte layers via inkjet printing of highly-stable ceramic inks", 
    "pagination": "279-290", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1135293537"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40145-020-0439-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40145-020-0439-9", 
      "https://app.dimensions.ai/details/publication/pub.1135293537"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_920.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40145-020-0439-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40145-020-0439-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40145-020-0439-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40145-020-0439-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40145-020-0439-9'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      22 PREDICATES      116 URIs      101 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40145-020-0439-9 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:09
4 anzsrc-for:0912
5 schema:author N562728d4e6cc4afbaabd61425bc1e9a0
6 schema:citation sg:pub.10.1007/s10853-005-3659-z
7 sg:pub.10.1007/s40145-018-0282-4
8 sg:pub.10.1007/s40145-018-0294-0
9 sg:pub.10.1557/mrs2003.230
10 sg:pub.10.1557/proc-625-117
11 schema:datePublished 2021-02-10
12 schema:datePublishedReg 2021-02-10
13 schema:description Inkjet printing is a promising alternative for the fabrication of thin film components for solid oxide fuel cells (SOFCs) due to its contactless, mask free, and controllable printing process. In order to obtain satisfying electrolyte thin layer structures in anode-supported SOFCs, the preparation of suitable electrolyte ceramic inks is a key. At present, such a kind of 8 mol% Y2O3-stabilized ZrO2 (8YSZ) electrolyte ceramic ink with long-term stability and high solid loading (> 15 wt%) seems rare for precise inkjet printing, and a number of characterization and performance aspects of the inks, such as homogeneity, viscosity, and printability, should be studied. In this study, 8YSZ ceramic inks of varied compositions were developed for inkjet printing of SOFC ceramic electrolyte layers. The dispersing effect of two types of dispersants, i.e., polyacrylic acid ammonium (PAANH4) and polyacrylic acid (PAA), were compared. The results show that ultrasonic dispersion treatment can help effectively disperse the ceramic particles in the inks. PAANH4 has a better dispersion effect for the inks developed in this study. The inks show excellent printable performance in the actual printing process. The stability of the ink can be maintained for a storage period of over 30 days with the help of initial ultrasonic dispersion. Finally, micron-size thin 8YSZ electrolyte films were successfully fabricated through inkjet printing and sintering, based on the as-developed high solid loading 8YSZ inks (20 wt%). The films show fully dense and intact structural morphology and smooth interfacial bonding, offering an improved structural quality of electrolyte for enhanced SOFC performance.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N2fc02d0fd89b4438bb74fcda022e4b85
18 N35ffc9e5a168431b8e851c5effac803d
19 sg:journal.1135863
20 schema:keywords SOFC performance
21 Y2O3
22 ZrO2
23 acid
24 acid ammonium
25 actual printing process
26 additive manufacturing
27 alternative
28 ammonium
29 anode
30 aspects
31 bonding
32 cells
33 ceramic ink
34 ceramic particles
35 characterization
36 components
37 composition
38 contactless
39 days
40 dispersant
41 dispersion
42 dispersion effects
43 dispersion treatment
44 effect
45 electrolyte
46 electrolyte films
47 electrolyte layer
48 fabrication
49 film components
50 films
51 fuel cells
52 good dispersion effect
53 help
54 high solid loading
55 homogeneity
56 improved structural quality
57 ink
58 inkjet printing
59 interfacial bonding
60 key
61 kind
62 layer
63 layer structure
64 loading
65 long-term stability
66 manufacturing
67 morphology
68 number
69 number of characterizations
70 order
71 oxide fuel cells
72 particles
73 performance
74 performance aspects
75 period
76 polyacrylic acid
77 preparation
78 printability
79 printing
80 printing process
81 process
82 promising alternative
83 quality
84 results
85 sintering
86 solid loading
87 solid oxide fuel cells
88 stability
89 storage period
90 structural morphology
91 structural quality
92 structure
93 study
94 thin electrolyte layer
95 thin film components
96 thin layer structure
97 treatment
98 type of dispersant
99 types
100 ultrasonic dispersion
101 ultrasonic dispersion treatment
102 varied composition
103 viscosity
104 schema:name Additive manufacturing of thin electrolyte layers via inkjet printing of highly-stable ceramic inks
105 schema:pagination 279-290
106 schema:productId N1bb3e63ee1d2430686de34d2a1838504
107 Nb160a253675f409db004c22ac20549c3
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135293537
109 https://doi.org/10.1007/s40145-020-0439-9
110 schema:sdDatePublished 2022-05-10T10:29
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher Nf7a10a29dee1431f806b7a89ceab5f91
113 schema:url https://doi.org/10.1007/s40145-020-0439-9
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N0906ce4e545d4481a4de596da3defd76 rdf:first sg:person.015073741477.56
118 rdf:rest rdf:nil
119 N1bb3e63ee1d2430686de34d2a1838504 schema:name doi
120 schema:value 10.1007/s40145-020-0439-9
121 rdf:type schema:PropertyValue
122 N2fc02d0fd89b4438bb74fcda022e4b85 schema:volumeNumber 10
123 rdf:type schema:PublicationVolume
124 N35ffc9e5a168431b8e851c5effac803d schema:issueNumber 2
125 rdf:type schema:PublicationIssue
126 N48c130ded49a4f1081c31809f3db4cb1 rdf:first sg:person.01022617373.00
127 rdf:rest N5da4a2c9e30d4e6e90bb116ef12c3588
128 N562728d4e6cc4afbaabd61425bc1e9a0 rdf:first sg:person.013246770111.22
129 rdf:rest Ne7d0f4ed293747d0a3e61dce7e409012
130 N5da4a2c9e30d4e6e90bb116ef12c3588 rdf:first sg:person.010776356266.54
131 rdf:rest Nf20f558290e749ad8c772886b0746e1d
132 N7caf1d67f595414b8e683fbf254d691e rdf:first sg:person.014044350511.53
133 rdf:rest Nfda429cf1216417e9cd6a2a2febe555d
134 N881bb40e0a2a4b0989d9bb15b2e192f0 rdf:first sg:person.01131426557.94
135 rdf:rest N0906ce4e545d4481a4de596da3defd76
136 Nb160a253675f409db004c22ac20549c3 schema:name dimensions_id
137 schema:value pub.1135293537
138 rdf:type schema:PropertyValue
139 Nd1163ca045ed4a7280e89704d2179026 rdf:first sg:person.013571424410.35
140 rdf:rest N48c130ded49a4f1081c31809f3db4cb1
141 Ne7d0f4ed293747d0a3e61dce7e409012 rdf:first sg:person.011654027111.08
142 rdf:rest N7caf1d67f595414b8e683fbf254d691e
143 Nf20f558290e749ad8c772886b0746e1d rdf:first sg:person.016603513321.59
144 rdf:rest N881bb40e0a2a4b0989d9bb15b2e192f0
145 Nf7a10a29dee1431f806b7a89ceab5f91 schema:name Springer Nature - SN SciGraph project
146 rdf:type schema:Organization
147 Nfda429cf1216417e9cd6a2a2febe555d rdf:first sg:person.012175145157.95
148 rdf:rest Nd1163ca045ed4a7280e89704d2179026
149 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
150 schema:name Chemical Sciences
151 rdf:type schema:DefinedTerm
152 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
153 schema:name Physical Chemistry (incl. Structural)
154 rdf:type schema:DefinedTerm
155 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
156 schema:name Engineering
157 rdf:type schema:DefinedTerm
158 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
159 schema:name Materials Engineering
160 rdf:type schema:DefinedTerm
161 sg:grant.8939202 http://pending.schema.org/fundedItem sg:pub.10.1007/s40145-020-0439-9
162 rdf:type schema:MonetaryGrant
163 sg:journal.1135863 schema:issn 2226-4108
164 2227-8508
165 schema:name Journal of Advanced Ceramics
166 schema:publisher Springer Nature
167 rdf:type schema:Periodical
168 sg:person.01022617373.00 schema:affiliation grid-institutes:grid.263488.3
169 schema:familyName Liu
170 schema:givenName Zhiyuan
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022617373.00
172 rdf:type schema:Person
173 sg:person.010776356266.54 schema:affiliation grid-institutes:grid.263488.3
174 schema:familyName Wang
175 schema:givenName Pei
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010776356266.54
177 rdf:type schema:Person
178 sg:person.01131426557.94 schema:affiliation grid-institutes:grid.263488.3
179 schema:familyName Lao
180 schema:givenName Changshi
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131426557.94
182 rdf:type schema:Person
183 sg:person.011654027111.08 schema:affiliation grid-institutes:grid.263488.3
184 schema:familyName Gong
185 schema:givenName Zhiyuan
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011654027111.08
187 rdf:type schema:Person
188 sg:person.012175145157.95 schema:affiliation grid-institutes:grid.263488.3
189 schema:familyName Li
190 schema:givenName Ziyong
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012175145157.95
192 rdf:type schema:Person
193 sg:person.013246770111.22 schema:affiliation grid-institutes:grid.263488.3
194 schema:familyName Zhu
195 schema:givenName Zhongqi
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013246770111.22
197 rdf:type schema:Person
198 sg:person.013571424410.35 schema:affiliation grid-institutes:grid.263488.3
199 schema:familyName Rasaki
200 schema:givenName Sefiu Abolaji
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013571424410.35
202 rdf:type schema:Person
203 sg:person.014044350511.53 schema:affiliation grid-institutes:grid.263488.3
204 schema:familyName Qu
205 schema:givenName Piao
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014044350511.53
207 rdf:type schema:Person
208 sg:person.015073741477.56 schema:affiliation grid-institutes:grid.263488.3
209 schema:familyName Chen
210 schema:givenName Zhangwei
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015073741477.56
212 rdf:type schema:Person
213 sg:person.016603513321.59 schema:affiliation grid-institutes:grid.263488.3
214 schema:familyName Liu
215 schema:givenName Changyong
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016603513321.59
217 rdf:type schema:Person
218 sg:pub.10.1007/s10853-005-3659-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1020745289
219 https://doi.org/10.1007/s10853-005-3659-z
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/s40145-018-0282-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110065530
222 https://doi.org/10.1007/s40145-018-0282-4
223 rdf:type schema:CreativeWork
224 sg:pub.10.1007/s40145-018-0294-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110227287
225 https://doi.org/10.1007/s40145-018-0294-0
226 rdf:type schema:CreativeWork
227 sg:pub.10.1557/mrs2003.230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067968369
228 https://doi.org/10.1557/mrs2003.230
229 rdf:type schema:CreativeWork
230 sg:pub.10.1557/proc-625-117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067949086
231 https://doi.org/10.1557/proc-625-117
232 rdf:type schema:CreativeWork
233 grid-institutes:grid.263488.3 schema:alternateName Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China
234 schema:name Additive Manufacturing Institute, Shenzhen University, 518060, Shenzhen, China
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...