The Use of a Relevance Vector Machine in Predicting Liquefaction Potential View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-12

AUTHORS

Pijush Samui, J. Karthikeyan

ABSTRACT

The prediction of liquefaction susceptibility of soil due to an earthquake is an imperative task in Civil Engineering. This study uses relevance vector machine (RVM) for the prediction of liquefaction susceptibility of soil based on cone penetration test from Chi-Chi earthquake, Taiwan. RVM is based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Here, RVM has been used as a classification tool. It gives output in a probabilistic form. Equations have been also developed for the determination of liquefaction susceptibility of soil based on the RVM model. This study shows that only two input parameters [cone resistance (qc) and maximum horizontal acceleration (amax) are sufficient for prediction of liquefaction susceptibility of soil. The results of RVM have been compared with the conventional methods. The developed RVM model provides a viable tool for civil engineers to determine the liquefaction susceptibility of soil. More... »

PAGES

458-467

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40098-013-0094-y

DOI

http://dx.doi.org/10.1007/s40098-013-0094-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043296654


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Vellore Institute of Technology University", 
          "id": "https://www.grid.ac/institutes/grid.412813.d", 
          "name": [
            "Center for Disaster Mitigation and Management, VIT University, 632014, Vellore, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Samui", 
        "givenName": "Pijush", 
        "id": "sg:person.010653044475.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010653044475.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vellore Institute of Technology University", 
          "id": "https://www.grid.ac/institutes/grid.412813.d", 
          "name": [
            "Center for Disaster Mitigation and Management, VIT University, 632014, Vellore, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karthikeyan", 
        "givenName": "J.", 
        "id": "sg:person.07351070456.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07351070456.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1139/t99-011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000340876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2007.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006602415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nag.1037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008396564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11803-007-0766-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019648525", 
          "https://doi.org/10.1007/s11803-007-0766-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nag.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024609548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nag.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024609548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0267-7261(02)00013-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025413131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/t01-073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032625454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/0885-9507.00154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033004207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/t98-017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033671353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2011.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038676766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-013-0615-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046093276", 
          "https://doi.org/10.1007/s11069-013-0615-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2007.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049891737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.soildyn.2004.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052629584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9410(1983)109:3(458)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057585704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9410(1985)111:3(384)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057586104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9410(1988)114:4(389)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057586667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9410(1994)120:9(1467)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057587906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9410(1995)121:12(856)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057587979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9410(1996)122:1(70)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057588120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1090-0241(2003)129:1(66)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057618591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.1986.36.3.425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068210137"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "The prediction of liquefaction susceptibility of soil due to an earthquake is an imperative task in Civil Engineering. This study uses relevance vector machine (RVM) for the prediction of liquefaction susceptibility of soil based on cone penetration test from Chi-Chi earthquake, Taiwan. RVM is based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Here, RVM has been used as a classification tool. It gives output in a probabilistic form. Equations have been also developed for the determination of liquefaction susceptibility of soil based on the RVM model. This study shows that only two input parameters [cone resistance (qc) and maximum horizontal acceleration (amax) are sufficient for prediction of liquefaction susceptibility of soil. The results of RVM have been compared with the conventional methods. The developed RVM model provides a viable tool for civil engineers to determine the liquefaction susceptibility of soil.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40098-013-0094-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136803", 
        "issn": [
          "0971-9555", 
          "2277-3347"
        ], 
        "name": "Indian Geotechnical Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "The Use of a Relevance Vector Machine in Predicting Liquefaction Potential", 
    "pagination": "458-467", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ce3ce7ace0e2801c0fc7dbd71bd11e1d129b6b815d4bacc46be562fe01603aa8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40098-013-0094-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043296654"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40098-013-0094-y", 
      "https://app.dimensions.ai/details/publication/pub.1043296654"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs40098-013-0094-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40098-013-0094-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40098-013-0094-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40098-013-0094-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40098-013-0094-y'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40098-013-0094-y schema:about anzsrc-for:05
2 anzsrc-for:0503
3 schema:author Ne338cc12f0f14d87a038b403a44ec93b
4 schema:citation sg:pub.10.1007/s11069-013-0615-0
5 sg:pub.10.1007/s11803-007-0766-7
6 https://doi.org/10.1002/nag.1037
7 https://doi.org/10.1002/nag.509
8 https://doi.org/10.1016/j.asoc.2011.03.009
9 https://doi.org/10.1016/j.compgeo.2007.06.001
10 https://doi.org/10.1016/j.compgeo.2007.06.014
11 https://doi.org/10.1016/j.soildyn.2004.06.009
12 https://doi.org/10.1016/s0267-7261(02)00013-1
13 https://doi.org/10.1061/(asce)0733-9410(1983)109:3(458)
14 https://doi.org/10.1061/(asce)0733-9410(1985)111:3(384)
15 https://doi.org/10.1061/(asce)0733-9410(1988)114:4(389)
16 https://doi.org/10.1061/(asce)0733-9410(1994)120:9(1467)
17 https://doi.org/10.1061/(asce)0733-9410(1995)121:12(856)
18 https://doi.org/10.1061/(asce)0733-9410(1996)122:1(70)
19 https://doi.org/10.1061/(asce)1090-0241(2003)129:1(66)
20 https://doi.org/10.1111/0885-9507.00154
21 https://doi.org/10.1139/t01-073
22 https://doi.org/10.1139/t98-017
23 https://doi.org/10.1139/t99-011
24 https://doi.org/10.1680/geot.1986.36.3.425
25 schema:datePublished 2014-12
26 schema:datePublishedReg 2014-12-01
27 schema:description The prediction of liquefaction susceptibility of soil due to an earthquake is an imperative task in Civil Engineering. This study uses relevance vector machine (RVM) for the prediction of liquefaction susceptibility of soil based on cone penetration test from Chi-Chi earthquake, Taiwan. RVM is based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Here, RVM has been used as a classification tool. It gives output in a probabilistic form. Equations have been also developed for the determination of liquefaction susceptibility of soil based on the RVM model. This study shows that only two input parameters [cone resistance (qc) and maximum horizontal acceleration (amax) are sufficient for prediction of liquefaction susceptibility of soil. The results of RVM have been compared with the conventional methods. The developed RVM model provides a viable tool for civil engineers to determine the liquefaction susceptibility of soil.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N3276dda48e604d41b34be7a5f5a684c8
32 N33cb63186f4742a192afeb328271de55
33 sg:journal.1136803
34 schema:name The Use of a Relevance Vector Machine in Predicting Liquefaction Potential
35 schema:pagination 458-467
36 schema:productId N1ef4ba6289ec4087a591da7ab49f5aa1
37 N251265f6f8cf41839ab7d0220be56a87
38 N82fdac752e15479abeb6f28a0aec9404
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043296654
40 https://doi.org/10.1007/s40098-013-0094-y
41 schema:sdDatePublished 2019-04-10T23:30
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N5b4f97d0cc9a41c8bf531ca92e80951f
44 schema:url http://link.springer.com/10.1007%2Fs40098-013-0094-y
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N0eaa257c0ebc47b9b7e24e25217d8b0e rdf:first sg:person.07351070456.06
49 rdf:rest rdf:nil
50 N1ef4ba6289ec4087a591da7ab49f5aa1 schema:name doi
51 schema:value 10.1007/s40098-013-0094-y
52 rdf:type schema:PropertyValue
53 N251265f6f8cf41839ab7d0220be56a87 schema:name readcube_id
54 schema:value ce3ce7ace0e2801c0fc7dbd71bd11e1d129b6b815d4bacc46be562fe01603aa8
55 rdf:type schema:PropertyValue
56 N3276dda48e604d41b34be7a5f5a684c8 schema:volumeNumber 44
57 rdf:type schema:PublicationVolume
58 N33cb63186f4742a192afeb328271de55 schema:issueNumber 4
59 rdf:type schema:PublicationIssue
60 N5b4f97d0cc9a41c8bf531ca92e80951f schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N82fdac752e15479abeb6f28a0aec9404 schema:name dimensions_id
63 schema:value pub.1043296654
64 rdf:type schema:PropertyValue
65 Ne338cc12f0f14d87a038b403a44ec93b rdf:first sg:person.010653044475.30
66 rdf:rest N0eaa257c0ebc47b9b7e24e25217d8b0e
67 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
68 schema:name Environmental Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
71 schema:name Soil Sciences
72 rdf:type schema:DefinedTerm
73 sg:journal.1136803 schema:issn 0971-9555
74 2277-3347
75 schema:name Indian Geotechnical Journal
76 rdf:type schema:Periodical
77 sg:person.010653044475.30 schema:affiliation https://www.grid.ac/institutes/grid.412813.d
78 schema:familyName Samui
79 schema:givenName Pijush
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010653044475.30
81 rdf:type schema:Person
82 sg:person.07351070456.06 schema:affiliation https://www.grid.ac/institutes/grid.412813.d
83 schema:familyName Karthikeyan
84 schema:givenName J.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07351070456.06
86 rdf:type schema:Person
87 sg:pub.10.1007/s11069-013-0615-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046093276
88 https://doi.org/10.1007/s11069-013-0615-0
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s11803-007-0766-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019648525
91 https://doi.org/10.1007/s11803-007-0766-7
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1002/nag.1037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008396564
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1002/nag.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024609548
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.asoc.2011.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038676766
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.compgeo.2007.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006602415
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.compgeo.2007.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049891737
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.soildyn.2004.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052629584
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/s0267-7261(02)00013-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025413131
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1061/(asce)0733-9410(1983)109:3(458) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057585704
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1061/(asce)0733-9410(1985)111:3(384) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057586104
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1061/(asce)0733-9410(1988)114:4(389) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057586667
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1061/(asce)0733-9410(1994)120:9(1467) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057587906
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1061/(asce)0733-9410(1995)121:12(856) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057587979
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1061/(asce)0733-9410(1996)122:1(70) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057588120
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1061/(asce)1090-0241(2003)129:1(66) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057618591
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1111/0885-9507.00154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033004207
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1139/t01-073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032625454
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1139/t98-017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033671353
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1139/t99-011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000340876
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1680/geot.1986.36.3.425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068210137
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.412813.d schema:alternateName Vellore Institute of Technology University
132 schema:name Center for Disaster Mitigation and Management, VIT University, 632014, Vellore, Tamilnadu, India
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...