Molecular design of O3 and NO2 sensor devices based on a novel heterostructured N-doped TiO2/ZnO nanocomposite: a van der Waals ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-11-04

AUTHORS

Amirali Abbasi, Jaber Jahanbin Sardroodi

ABSTRACT

We have presented a density functional theory study of the adsorption properties of NO2 and O3 molecules on heterostructured TiO2/ZnO nanocomposites. The most stable adsorption configurations, adsorption energies and charge transfers were calculated. The electronic properties of the complex TiO2/ZnO heterostructures were described using the density of states and molecular orbital analyses. For NO2 adsorption, it was found that the oxygen atoms preferentially move towards the fivefold coordinated titanium atoms, whereas the nitrogen atom binds to the zinc atom. In the case of O3 adsorption, the side oxygen atoms bind to the fivefold coordinated titanium sites, and the central oxygen atom does not contribute to the adsorption any longer. Thus, the interaction of NO2 and O3 molecules with TiO2 side of nanocomposite is strongly favored. On the N-doped TiO2/ZnO nanocomposites, the adsorption process is more energetically favorable than that on the pristine ones. The N-doped nanocomposites are far more sensitive to gas detection than the undoped ones. In TiO2/ZnO nanocomposites, the interactions of gas molecule and TiO2 are stronger than those between gas molecule and bare TiO2 nanoparticles, which reveals that ZnO is conducive to the interaction of NO2 and O3 molecules with TiO2 nanoparticles. Our theoretical results suggest multicomponent TiO2/ZnO nanocomposite as a potential material for gas sensing application.Graphical Abstract More... »

PAGES

345-358

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40097-017-0244-3

DOI

http://dx.doi.org/10.1007/s40097-017-0244-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092536947


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran", 
          "id": "http://www.grid.ac/institutes/grid.411468.e", 
          "name": [
            "Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran", 
            "Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran", 
            "Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abbasi", 
        "givenName": "Amirali", 
        "id": "sg:person.014133055621.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133055621.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran", 
          "id": "http://www.grid.ac/institutes/grid.411468.e", 
          "name": [
            "Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran", 
            "Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran", 
            "Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sardroodi", 
        "givenName": "Jaber Jahanbin", 
        "id": "sg:person.014264100262.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264100262.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/2228-5326-3-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029265080", 
          "https://doi.org/10.1186/2228-5326-3-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-013-7964-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011239955", 
          "https://doi.org/10.1007/s00339-013-7964-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10856-008-3541-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034130045", 
          "https://doi.org/10.1007/s10856-008-3541-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11-04", 
    "datePublishedReg": "2017-11-04", 
    "description": "We have presented a density functional theory study of the adsorption properties of NO2 and O3 molecules on heterostructured TiO2/ZnO nanocomposites. The most stable adsorption configurations, adsorption energies and charge transfers were calculated. The electronic properties of the complex TiO2/ZnO heterostructures were described using the density of states and molecular orbital analyses. For NO2 adsorption, it was found that the oxygen atoms preferentially move towards the fivefold coordinated titanium atoms, whereas the nitrogen atom binds to the zinc atom. In the case of O3 adsorption, the side oxygen atoms bind to the fivefold coordinated titanium sites, and the central oxygen atom does not contribute to the adsorption any longer. Thus, the interaction of NO2 and O3 molecules with TiO2 side of nanocomposite is strongly favored. On the N-doped TiO2/ZnO nanocomposites, the adsorption process is more energetically favorable than that on the pristine ones. The N-doped nanocomposites are far more sensitive to gas detection than the undoped ones. In TiO2/ZnO nanocomposites, the interactions of gas molecule and TiO2 are stronger than those between gas molecule and bare TiO2 nanoparticles, which reveals that ZnO is conducive to the interaction of NO2 and O3 molecules with TiO2 nanoparticles. Our theoretical results suggest multicomponent TiO2/ZnO nanocomposite as a potential material for gas sensing application.Graphical Abstract", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40097-017-0244-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1053731", 
        "issn": [
          "2008-9244", 
          "2193-8865"
        ], 
        "name": "Journal of Nanostructure in Chemistry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "TiO2/ZnO nanocomposites", 
      "interaction of NO2", 
      "ZnO nanocomposites", 
      "O3 molecules", 
      "oxygen atoms", 
      "TiO2 nanoparticles", 
      "fivefold coordinated titanium atoms", 
      "fivefold coordinated titanium sites", 
      "gas molecules", 
      "coordinated titanium atoms", 
      "stable adsorption configuration", 
      "molecular orbital analysis", 
      "bare TiO2 nanoparticles", 
      "density functional theory study", 
      "van der Waals", 
      "central oxygen atom", 
      "functional theory study", 
      "adsorption properties", 
      "adsorption configurations", 
      "orbital analysis", 
      "adsorption energy", 
      "NO2 adsorption", 
      "adsorption process", 
      "molecular design", 
      "nitrogen atoms", 
      "O3 adsorption", 
      "charge transfer", 
      "titanium sites", 
      "pristine one", 
      "DFT study", 
      "TiO2 side", 
      "electronic properties", 
      "der Waals", 
      "titanium atoms", 
      "undoped ones", 
      "adsorption", 
      "potential material", 
      "nanocomposites", 
      "gas detection", 
      "zinc atom", 
      "atoms", 
      "molecules", 
      "density of states", 
      "nanoparticles", 
      "theory study", 
      "NO2", 
      "ZnO heterostructures", 
      "sensor devices", 
      "Waals", 
      "TiO2", 
      "properties", 
      "ZnO", 
      "interaction", 
      "O3", 
      "materials", 
      "heterostructures", 
      "gas", 
      "energy", 
      "transfer", 
      "theoretical results", 
      "detection", 
      "novel", 
      "density", 
      "applications", 
      "devices", 
      "process", 
      "configuration", 
      "sites", 
      "state", 
      "one", 
      "study", 
      "analysis", 
      "results", 
      "design", 
      "side", 
      "cases", 
      "complex TiO2/ZnO heterostructures", 
      "TiO2/ZnO heterostructures", 
      "side oxygen atoms", 
      "coordinated titanium sites", 
      "multicomponent TiO2/ZnO nanocomposite", 
      "Graphical Abstract Molecular design", 
      "Abstract Molecular design", 
      "NO2 sensor devices"
    ], 
    "name": "Molecular design of O3 and NO2 sensor devices based on a novel heterostructured N-doped TiO2/ZnO nanocomposite: a van der Waals corrected DFT study", 
    "pagination": "345-358", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092536947"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40097-017-0244-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40097-017-0244-3", 
      "https://app.dimensions.ai/details/publication/pub.1092536947"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_743.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40097-017-0244-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40097-017-0244-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40097-017-0244-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40097-017-0244-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40097-017-0244-3'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      22 PREDICATES      112 URIs      101 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40097-017-0244-3 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Ndac7f6222022488faca34daae23fb73c
4 schema:citation sg:pub.10.1007/s00339-013-7964-0
5 sg:pub.10.1007/s10856-008-3541-z
6 sg:pub.10.1186/2228-5326-3-5
7 schema:datePublished 2017-11-04
8 schema:datePublishedReg 2017-11-04
9 schema:description We have presented a density functional theory study of the adsorption properties of NO2 and O3 molecules on heterostructured TiO2/ZnO nanocomposites. The most stable adsorption configurations, adsorption energies and charge transfers were calculated. The electronic properties of the complex TiO2/ZnO heterostructures were described using the density of states and molecular orbital analyses. For NO2 adsorption, it was found that the oxygen atoms preferentially move towards the fivefold coordinated titanium atoms, whereas the nitrogen atom binds to the zinc atom. In the case of O3 adsorption, the side oxygen atoms bind to the fivefold coordinated titanium sites, and the central oxygen atom does not contribute to the adsorption any longer. Thus, the interaction of NO2 and O3 molecules with TiO2 side of nanocomposite is strongly favored. On the N-doped TiO2/ZnO nanocomposites, the adsorption process is more energetically favorable than that on the pristine ones. The N-doped nanocomposites are far more sensitive to gas detection than the undoped ones. In TiO2/ZnO nanocomposites, the interactions of gas molecule and TiO2 are stronger than those between gas molecule and bare TiO2 nanoparticles, which reveals that ZnO is conducive to the interaction of NO2 and O3 molecules with TiO2 nanoparticles. Our theoretical results suggest multicomponent TiO2/ZnO nanocomposite as a potential material for gas sensing application.Graphical Abstract
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N2033c149ffb34673a644d0133cc304dd
14 N5f828041725f48b78e0fe4f5178f1a42
15 sg:journal.1053731
16 schema:keywords Abstract Molecular design
17 DFT study
18 Graphical Abstract Molecular design
19 NO2
20 NO2 adsorption
21 NO2 sensor devices
22 O3
23 O3 adsorption
24 O3 molecules
25 TiO2
26 TiO2 nanoparticles
27 TiO2 side
28 TiO2/ZnO heterostructures
29 TiO2/ZnO nanocomposites
30 Waals
31 ZnO
32 ZnO heterostructures
33 ZnO nanocomposites
34 adsorption
35 adsorption configurations
36 adsorption energy
37 adsorption process
38 adsorption properties
39 analysis
40 applications
41 atoms
42 bare TiO2 nanoparticles
43 cases
44 central oxygen atom
45 charge transfer
46 complex TiO2/ZnO heterostructures
47 configuration
48 coordinated titanium atoms
49 coordinated titanium sites
50 density
51 density functional theory study
52 density of states
53 der Waals
54 design
55 detection
56 devices
57 electronic properties
58 energy
59 fivefold coordinated titanium atoms
60 fivefold coordinated titanium sites
61 functional theory study
62 gas
63 gas detection
64 gas molecules
65 heterostructures
66 interaction
67 interaction of NO2
68 materials
69 molecular design
70 molecular orbital analysis
71 molecules
72 multicomponent TiO2/ZnO nanocomposite
73 nanocomposites
74 nanoparticles
75 nitrogen atoms
76 novel
77 one
78 orbital analysis
79 oxygen atoms
80 potential material
81 pristine one
82 process
83 properties
84 results
85 sensor devices
86 side
87 side oxygen atoms
88 sites
89 stable adsorption configuration
90 state
91 study
92 theoretical results
93 theory study
94 titanium atoms
95 titanium sites
96 transfer
97 undoped ones
98 van der Waals
99 zinc atom
100 schema:name Molecular design of O3 and NO2 sensor devices based on a novel heterostructured N-doped TiO2/ZnO nanocomposite: a van der Waals corrected DFT study
101 schema:pagination 345-358
102 schema:productId N7808f5a523264c748230e0760173c12e
103 N968b8fc074b241bc80cd5762604bdef3
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092536947
105 https://doi.org/10.1007/s40097-017-0244-3
106 schema:sdDatePublished 2022-01-01T18:44
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher N21e57d4f2a1c45bf933d559a33569a90
109 schema:url https://doi.org/10.1007/s40097-017-0244-3
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N2033c149ffb34673a644d0133cc304dd schema:issueNumber 4
114 rdf:type schema:PublicationIssue
115 N21e57d4f2a1c45bf933d559a33569a90 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 N5f828041725f48b78e0fe4f5178f1a42 schema:volumeNumber 7
118 rdf:type schema:PublicationVolume
119 N7808f5a523264c748230e0760173c12e schema:name dimensions_id
120 schema:value pub.1092536947
121 rdf:type schema:PropertyValue
122 N968b8fc074b241bc80cd5762604bdef3 schema:name doi
123 schema:value 10.1007/s40097-017-0244-3
124 rdf:type schema:PropertyValue
125 Ndac7f6222022488faca34daae23fb73c rdf:first sg:person.014133055621.61
126 rdf:rest Ne9819f799aa740b286b6dbf57bbbf3c4
127 Ne9819f799aa740b286b6dbf57bbbf3c4 rdf:first sg:person.014264100262.28
128 rdf:rest rdf:nil
129 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
130 schema:name Chemical Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
133 schema:name Physical Chemistry (incl. Structural)
134 rdf:type schema:DefinedTerm
135 sg:journal.1053731 schema:issn 2008-9244
136 2193-8865
137 schema:name Journal of Nanostructure in Chemistry
138 schema:publisher Springer Nature
139 rdf:type schema:Periodical
140 sg:person.014133055621.61 schema:affiliation grid-institutes:grid.411468.e
141 schema:familyName Abbasi
142 schema:givenName Amirali
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133055621.61
144 rdf:type schema:Person
145 sg:person.014264100262.28 schema:affiliation grid-institutes:grid.411468.e
146 schema:familyName Sardroodi
147 schema:givenName Jaber Jahanbin
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264100262.28
149 rdf:type schema:Person
150 sg:pub.10.1007/s00339-013-7964-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011239955
151 https://doi.org/10.1007/s00339-013-7964-0
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s10856-008-3541-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1034130045
154 https://doi.org/10.1007/s10856-008-3541-z
155 rdf:type schema:CreativeWork
156 sg:pub.10.1186/2228-5326-3-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029265080
157 https://doi.org/10.1186/2228-5326-3-5
158 rdf:type schema:CreativeWork
159 grid-institutes:grid.411468.e schema:alternateName Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
160 schema:name Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran
161 Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
162 Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...