A novel nitrogen dioxide gas sensor based on TiO2-supported Au nanoparticles: a van der Waals corrected DFT study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-05-15

AUTHORS

Amirali Abbasi, Jaber Jahanbin Sardroodi

ABSTRACT

The interactions of nitrogen dioxide molecule with TiO2-supported Au nanoparticles were investigated using density functional theory. Surface Au atoms on the TiO2-supported Au overlayer were found to be the most favorable binding sites, thus making the adsorption process very strong. Both oxygen and nitrogen atoms of the NO2 molecule can bind to the Au surface by forming strong chemical bonds. The adsorption of NO2 molecule on the considered structures gives rise to significant changes in the bond lengths, bond angles, and adsorption energies of the complex systems. The results indicate that NO2 adsorption on the TiO2-supported Au nanoparticle by its oxygen atoms is energetically more favorable than the NO2 adsorption by its nitrogen atom, indicating the strong binding of NO2 to the TiO2-supported Au through its oxygen atoms. Thus, the bridge configuration of TiO2/Au + NO2 is found to be the most stable configuration. Both oxygen and nitrogen atoms of NO2 move favorably towards the Au surface, as confirmed by significant overlaps in the PDOSs of the atoms that forming chemical bonds. This study not only suggests a theoretical basis for gas-sensing properties of the TiO2-supported Au nanoparticles, but also offers a rational approach to develop nanostructure-based chemical sensors with improved performance. More... »

PAGES

121-132

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40097-017-0226-5

DOI

http://dx.doi.org/10.1007/s40097-017-0226-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085412111


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran", 
          "id": "http://www.grid.ac/institutes/grid.411468.e", 
          "name": [
            "Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran", 
            "Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran", 
            "Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abbasi", 
        "givenName": "Amirali", 
        "id": "sg:person.014133055621.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133055621.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran", 
          "id": "http://www.grid.ac/institutes/grid.411468.e", 
          "name": [
            "Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran", 
            "Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran", 
            "Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sardroodi", 
        "givenName": "Jaber Jahanbin", 
        "id": "sg:person.014264100262.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264100262.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10853-007-1496-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022979881", 
          "https://doi.org/10.1007/s10853-007-1496-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/238037a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011069243", 
          "https://doi.org/10.1038/238037a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05-15", 
    "datePublishedReg": "2017-05-15", 
    "description": "The interactions of nitrogen dioxide molecule with TiO2-supported Au nanoparticles were investigated using density functional theory. Surface Au atoms on the TiO2-supported Au overlayer were found to be the most favorable binding sites, thus making the adsorption process very strong. Both oxygen and nitrogen atoms of the NO2 molecule can bind to the Au surface by forming strong chemical bonds. The adsorption of NO2 molecule on the considered structures gives rise to significant changes in the bond lengths, bond angles, and adsorption energies of the complex systems. The results indicate that NO2 adsorption on the TiO2-supported Au nanoparticle by its oxygen atoms is energetically more favorable than the NO2 adsorption by its nitrogen atom, indicating the strong binding of NO2 to the TiO2-supported Au through its oxygen atoms. Thus, the bridge configuration of TiO2/Au\u00a0+\u00a0NO2 is found to be the most stable configuration. Both oxygen and nitrogen atoms of NO2 move favorably towards the Au surface, as confirmed by significant overlaps in the PDOSs of the atoms that forming chemical bonds. This study not only suggests a theoretical basis for gas-sensing properties of the TiO2-supported Au nanoparticles, but also offers a rational approach to develop nanostructure-based chemical sensors with improved performance.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40097-017-0226-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053731", 
        "issn": [
          "2008-9244", 
          "2193-8865"
        ], 
        "name": "Journal of Nanostructure in Chemistry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "TiO2-supported Au nanoparticles", 
      "Au nanoparticles", 
      "nitrogen atoms", 
      "chemical bonds", 
      "NO2 adsorption", 
      "Au surface", 
      "NO2 molecules", 
      "oxygen atoms", 
      "nitrogen dioxide molecules", 
      "nitrogen dioxide gas sensor", 
      "strong chemical bonds", 
      "gas-sensing properties", 
      "van der Waals", 
      "TiO2/Au", 
      "TiO2-supported Au", 
      "density functional theory", 
      "adsorption energy", 
      "chemical sensors", 
      "adsorption process", 
      "dioxide molecules", 
      "surface Au", 
      "DFT study", 
      "bond angles", 
      "bond lengths", 
      "der Waals", 
      "nanoparticles", 
      "adsorption", 
      "gas sensors", 
      "functional theory", 
      "strong binding", 
      "atoms", 
      "molecules", 
      "bonds", 
      "NO2", 
      "stable configuration", 
      "Au", 
      "Au overlayer", 
      "oxygen", 
      "surface", 
      "Waals", 
      "overlayer", 
      "PDOSs", 
      "improved performance", 
      "sensors", 
      "properties", 
      "structure", 
      "rational approach", 
      "energy", 
      "bridge configuration", 
      "configuration", 
      "interaction", 
      "binding", 
      "complex systems", 
      "angle", 
      "process", 
      "sites", 
      "performance", 
      "significant changes", 
      "length", 
      "study", 
      "basis", 
      "system", 
      "theoretical basis", 
      "results", 
      "rise", 
      "changes", 
      "approach", 
      "overlap", 
      "theory", 
      "significant overlap", 
      "TiO2-supported Au overlayer", 
      "nanostructure-based chemical sensors", 
      "novel nitrogen dioxide gas sensor", 
      "dioxide gas sensor"
    ], 
    "name": "A novel nitrogen dioxide gas sensor based on TiO2-supported Au nanoparticles: a van der Waals corrected DFT study", 
    "pagination": "121-132", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085412111"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40097-017-0226-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40097-017-0226-5", 
      "https://app.dimensions.ai/details/publication/pub.1085412111"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_721.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40097-017-0226-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40097-017-0226-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40097-017-0226-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40097-017-0226-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40097-017-0226-5'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      22 PREDICATES      101 URIs      91 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40097-017-0226-5 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N7325b8ad13f44bdd86c0aa14b1ba1cf4
4 schema:citation sg:pub.10.1007/s10853-007-1496-y
5 sg:pub.10.1038/238037a0
6 schema:datePublished 2017-05-15
7 schema:datePublishedReg 2017-05-15
8 schema:description The interactions of nitrogen dioxide molecule with TiO2-supported Au nanoparticles were investigated using density functional theory. Surface Au atoms on the TiO2-supported Au overlayer were found to be the most favorable binding sites, thus making the adsorption process very strong. Both oxygen and nitrogen atoms of the NO2 molecule can bind to the Au surface by forming strong chemical bonds. The adsorption of NO2 molecule on the considered structures gives rise to significant changes in the bond lengths, bond angles, and adsorption energies of the complex systems. The results indicate that NO2 adsorption on the TiO2-supported Au nanoparticle by its oxygen atoms is energetically more favorable than the NO2 adsorption by its nitrogen atom, indicating the strong binding of NO2 to the TiO2-supported Au through its oxygen atoms. Thus, the bridge configuration of TiO2/Au + NO2 is found to be the most stable configuration. Both oxygen and nitrogen atoms of NO2 move favorably towards the Au surface, as confirmed by significant overlaps in the PDOSs of the atoms that forming chemical bonds. This study not only suggests a theoretical basis for gas-sensing properties of the TiO2-supported Au nanoparticles, but also offers a rational approach to develop nanostructure-based chemical sensors with improved performance.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N1190fd9b3d314d62978c47af3622ef94
13 Nc925afe659794533a7bb6f9e3ac00091
14 sg:journal.1053731
15 schema:keywords Au
16 Au nanoparticles
17 Au overlayer
18 Au surface
19 DFT study
20 NO2
21 NO2 adsorption
22 NO2 molecules
23 PDOSs
24 TiO2-supported Au
25 TiO2-supported Au nanoparticles
26 TiO2-supported Au overlayer
27 TiO2/Au
28 Waals
29 adsorption
30 adsorption energy
31 adsorption process
32 angle
33 approach
34 atoms
35 basis
36 binding
37 bond angles
38 bond lengths
39 bonds
40 bridge configuration
41 changes
42 chemical bonds
43 chemical sensors
44 complex systems
45 configuration
46 density functional theory
47 der Waals
48 dioxide gas sensor
49 dioxide molecules
50 energy
51 functional theory
52 gas sensors
53 gas-sensing properties
54 improved performance
55 interaction
56 length
57 molecules
58 nanoparticles
59 nanostructure-based chemical sensors
60 nitrogen atoms
61 nitrogen dioxide gas sensor
62 nitrogen dioxide molecules
63 novel nitrogen dioxide gas sensor
64 overlap
65 overlayer
66 oxygen
67 oxygen atoms
68 performance
69 process
70 properties
71 rational approach
72 results
73 rise
74 sensors
75 significant changes
76 significant overlap
77 sites
78 stable configuration
79 strong binding
80 strong chemical bonds
81 structure
82 study
83 surface
84 surface Au
85 system
86 theoretical basis
87 theory
88 van der Waals
89 schema:name A novel nitrogen dioxide gas sensor based on TiO2-supported Au nanoparticles: a van der Waals corrected DFT study
90 schema:pagination 121-132
91 schema:productId N1dfa919e429f4913a75309340c93f69b
92 N622ffd8803ac4e32947e20a15c9400af
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085412111
94 https://doi.org/10.1007/s40097-017-0226-5
95 schema:sdDatePublished 2022-01-01T18:42
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher N57b13c6a2aff4fc59ea79da9d589fea4
98 schema:url https://doi.org/10.1007/s40097-017-0226-5
99 sgo:license sg:explorer/license/
100 sgo:sdDataset articles
101 rdf:type schema:ScholarlyArticle
102 N03387a9736f84db887bf81e9621c6c96 rdf:first sg:person.014264100262.28
103 rdf:rest rdf:nil
104 N1190fd9b3d314d62978c47af3622ef94 schema:issueNumber 2
105 rdf:type schema:PublicationIssue
106 N1dfa919e429f4913a75309340c93f69b schema:name doi
107 schema:value 10.1007/s40097-017-0226-5
108 rdf:type schema:PropertyValue
109 N57b13c6a2aff4fc59ea79da9d589fea4 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N622ffd8803ac4e32947e20a15c9400af schema:name dimensions_id
112 schema:value pub.1085412111
113 rdf:type schema:PropertyValue
114 N7325b8ad13f44bdd86c0aa14b1ba1cf4 rdf:first sg:person.014133055621.61
115 rdf:rest N03387a9736f84db887bf81e9621c6c96
116 Nc925afe659794533a7bb6f9e3ac00091 schema:volumeNumber 7
117 rdf:type schema:PublicationVolume
118 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
119 schema:name Chemical Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
122 schema:name Physical Chemistry (incl. Structural)
123 rdf:type schema:DefinedTerm
124 sg:journal.1053731 schema:issn 2008-9244
125 2193-8865
126 schema:name Journal of Nanostructure in Chemistry
127 schema:publisher Springer Nature
128 rdf:type schema:Periodical
129 sg:person.014133055621.61 schema:affiliation grid-institutes:grid.411468.e
130 schema:familyName Abbasi
131 schema:givenName Amirali
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133055621.61
133 rdf:type schema:Person
134 sg:person.014264100262.28 schema:affiliation grid-institutes:grid.411468.e
135 schema:familyName Sardroodi
136 schema:givenName Jaber Jahanbin
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264100262.28
138 rdf:type schema:Person
139 sg:pub.10.1007/s10853-007-1496-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1022979881
140 https://doi.org/10.1007/s10853-007-1496-y
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/238037a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011069243
143 https://doi.org/10.1038/238037a0
144 rdf:type schema:CreativeWork
145 grid-institutes:grid.411468.e schema:alternateName Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran
146 schema:name Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran
147 Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
148 Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...