Theoretical study of the adsorption of NOx on TiO2/MoS2 nanocomposites: a comparison between undoped and N-doped nanocomposites View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-10-04

AUTHORS

Amirali Abbasi, Jaber Jahanbin Sardroodi

ABSTRACT

First-principle calculations within density functional theory were performed to investigate the interactions of NO and NO2 molecules with TiO2/MoS2 nanocomposites. Given the need to further comprehend the behavior of the NOx molecules positioned between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems consisting of the NOx molecule oriented at appropriate positions between the nanoparticle and MoS2 monolayer. The structural properties, such as bond lengths, bond angles, adsorption energies and Mulliken population analysis, and the electronic properties, including the density of states and molecular orbitals, were also analyzed in detail. The results indicate that the interactions between NOx molecules and N-doped TiO2 in TiO2-N/MoS2 nanocomposites are stronger than those between gas molecules and undoped TiO2 in TiO2/MoS2 nanocomposites, which reveal that the N-doping helps to strengthen the interaction of toxic gas molecules with hybrid TiO2/MoS2 nanocomposites. The N-doped TiO2/MoS2 nanocomposites have higher sensing capabilities than the undoped ones, and the interaction of NOx molecules with N-doped nanocomposites is more favorable in energy than the interaction with undoped nanocomposites. Therefore, the obtained results also present a theoretical basis for the potential application of TiO2/MoS2 nanocomposite as an extremely sensitive gas sensor for NO and NO2 molecules.Graphical Abstract More... »

PAGES

309-327

References to SciGraph publications

  • 2010-01-27. Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange in JOURNAL OF MATERIALS SCIENCE
  • 2011-01-30. Single-layer MoS2 transistors in NATURE NANOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40097-016-0204-3

    DOI

    http://dx.doi.org/10.1007/s40097-016-0204-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035946656


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411468.e", 
              "name": [
                "Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran", 
                "Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran", 
                "Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abbasi", 
            "givenName": "Amirali", 
            "id": "sg:person.014133055621.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133055621.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411468.e", 
              "name": [
                "Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran", 
                "Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran", 
                "Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sardroodi", 
            "givenName": "Jaber Jahanbin", 
            "id": "sg:person.014264100262.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264100262.28"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nnano.2010.279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047704758", 
              "https://doi.org/10.1038/nnano.2010.279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10853-010-4242-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017438483", 
              "https://doi.org/10.1007/s10853-010-4242-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-10-04", 
        "datePublishedReg": "2016-10-04", 
        "description": "First-principle calculations within density functional theory were performed to investigate the interactions of NO and NO2 molecules with TiO2/MoS2 nanocomposites. Given the need to further comprehend the behavior of the NOx molecules positioned between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems consisting of the NOx molecule oriented at appropriate positions between the nanoparticle and MoS2 monolayer. The structural properties, such as bond lengths, bond angles, adsorption energies and Mulliken population analysis, and the electronic properties, including the density of states and molecular orbitals, were also analyzed in detail. The results indicate that the interactions between NOx molecules and N-doped TiO2 in TiO2-N/MoS2 nanocomposites are stronger than those between gas molecules and undoped TiO2 in TiO2/MoS2 nanocomposites, which reveal that the N-doping helps to strengthen the interaction of toxic gas molecules with hybrid TiO2/MoS2 nanocomposites. The N-doped TiO2/MoS2 nanocomposites have higher sensing capabilities than the undoped ones, and the interaction of NOx molecules with N-doped nanocomposites is more favorable in energy than the interaction with undoped nanocomposites. Therefore, the obtained results also present a theoretical basis for the potential application of TiO2/MoS2 nanocomposite as an extremely sensitive gas sensor for NO and NO2 molecules.Graphical Abstract", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s40097-016-0204-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1053731", 
            "issn": [
              "2008-9244", 
              "2193-8865"
            ], 
            "name": "Journal of Nanostructure in Chemistry", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "TiO2/MoS2 nanocomposites", 
          "NOx molecules", 
          "MoS2 nanocomposites", 
          "NO2 molecules", 
          "gas molecules", 
          "toxic gas molecules", 
          "adsorption of NOx", 
          "Mulliken population analysis", 
          "sensitive gas sensors", 
          "interaction of NO", 
          "MoS2 monolayer", 
          "density functional theory", 
          "adsorption energy", 
          "molecular orbitals", 
          "high sensing capability", 
          "bond lengths", 
          "bond angles", 
          "first-principles calculations", 
          "N-doping", 
          "TiO2 nanoparticles", 
          "electronic properties", 
          "functional theory", 
          "undoped nanocomposite", 
          "nanocomposites", 
          "undoped ones", 
          "gas sensors", 
          "molecules", 
          "structural properties", 
          "theoretical study", 
          "population analysis", 
          "density of states", 
          "TiO2", 
          "potential applications", 
          "nanoparticles", 
          "monolayers", 
          "sensing capabilities", 
          "adsorption", 
          "NO", 
          "properties", 
          "orbitals", 
          "interaction", 
          "energy", 
          "NOx", 
          "calculations", 
          "appropriate position", 
          "sensors", 
          "density", 
          "applications", 
          "complex systems", 
          "behavior", 
          "capability", 
          "angle", 
          "detail", 
          "state", 
          "results", 
          "length", 
          "basis", 
          "theoretical basis", 
          "analysis", 
          "position", 
          "system", 
          "one", 
          "comparison", 
          "study", 
          "theory", 
          "need"
        ], 
        "name": "Theoretical study of the adsorption of NOx on TiO2/MoS2 nanocomposites: a comparison between undoped and N-doped nanocomposites", 
        "pagination": "309-327", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035946656"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40097-016-0204-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40097-016-0204-3", 
          "https://app.dimensions.ai/details/publication/pub.1035946656"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_697.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s40097-016-0204-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40097-016-0204-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40097-016-0204-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40097-016-0204-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40097-016-0204-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    141 TRIPLES      22 PREDICATES      93 URIs      83 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40097-016-0204-3 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Nee2287867f5347229548939bdde51457
    4 schema:citation sg:pub.10.1007/s10853-010-4242-9
    5 sg:pub.10.1038/nnano.2010.279
    6 schema:datePublished 2016-10-04
    7 schema:datePublishedReg 2016-10-04
    8 schema:description First-principle calculations within density functional theory were performed to investigate the interactions of NO and NO2 molecules with TiO2/MoS2 nanocomposites. Given the need to further comprehend the behavior of the NOx molecules positioned between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems consisting of the NOx molecule oriented at appropriate positions between the nanoparticle and MoS2 monolayer. The structural properties, such as bond lengths, bond angles, adsorption energies and Mulliken population analysis, and the electronic properties, including the density of states and molecular orbitals, were also analyzed in detail. The results indicate that the interactions between NOx molecules and N-doped TiO2 in TiO2-N/MoS2 nanocomposites are stronger than those between gas molecules and undoped TiO2 in TiO2/MoS2 nanocomposites, which reveal that the N-doping helps to strengthen the interaction of toxic gas molecules with hybrid TiO2/MoS2 nanocomposites. The N-doped TiO2/MoS2 nanocomposites have higher sensing capabilities than the undoped ones, and the interaction of NOx molecules with N-doped nanocomposites is more favorable in energy than the interaction with undoped nanocomposites. Therefore, the obtained results also present a theoretical basis for the potential application of TiO2/MoS2 nanocomposite as an extremely sensitive gas sensor for NO and NO2 molecules.Graphical Abstract
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree true
    12 schema:isPartOf N034e4ffd96db420db551f513ba836d9b
    13 N146d26672a194ebc82c9aad85633cb6f
    14 sg:journal.1053731
    15 schema:keywords MoS2 monolayer
    16 MoS2 nanocomposites
    17 Mulliken population analysis
    18 N-doping
    19 NO
    20 NO2 molecules
    21 NOx
    22 NOx molecules
    23 TiO2
    24 TiO2 nanoparticles
    25 TiO2/MoS2 nanocomposites
    26 adsorption
    27 adsorption energy
    28 adsorption of NOx
    29 analysis
    30 angle
    31 applications
    32 appropriate position
    33 basis
    34 behavior
    35 bond angles
    36 bond lengths
    37 calculations
    38 capability
    39 comparison
    40 complex systems
    41 density
    42 density functional theory
    43 density of states
    44 detail
    45 electronic properties
    46 energy
    47 first-principles calculations
    48 functional theory
    49 gas molecules
    50 gas sensors
    51 high sensing capability
    52 interaction
    53 interaction of NO
    54 length
    55 molecular orbitals
    56 molecules
    57 monolayers
    58 nanocomposites
    59 nanoparticles
    60 need
    61 one
    62 orbitals
    63 population analysis
    64 position
    65 potential applications
    66 properties
    67 results
    68 sensing capabilities
    69 sensitive gas sensors
    70 sensors
    71 state
    72 structural properties
    73 study
    74 system
    75 theoretical basis
    76 theoretical study
    77 theory
    78 toxic gas molecules
    79 undoped nanocomposite
    80 undoped ones
    81 schema:name Theoretical study of the adsorption of NOx on TiO2/MoS2 nanocomposites: a comparison between undoped and N-doped nanocomposites
    82 schema:pagination 309-327
    83 schema:productId N148ca2d924304b5fb1f45feab154964e
    84 N198715fd0d8549ba91311dfd97e47d05
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035946656
    86 https://doi.org/10.1007/s40097-016-0204-3
    87 schema:sdDatePublished 2022-05-20T07:32
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher Nf50f696a2e734a92882b19788c9b0676
    90 schema:url https://doi.org/10.1007/s40097-016-0204-3
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N034e4ffd96db420db551f513ba836d9b schema:volumeNumber 6
    95 rdf:type schema:PublicationVolume
    96 N1202e4231c1e41c7b828ab9861f56408 rdf:first sg:person.014264100262.28
    97 rdf:rest rdf:nil
    98 N146d26672a194ebc82c9aad85633cb6f schema:issueNumber 4
    99 rdf:type schema:PublicationIssue
    100 N148ca2d924304b5fb1f45feab154964e schema:name doi
    101 schema:value 10.1007/s40097-016-0204-3
    102 rdf:type schema:PropertyValue
    103 N198715fd0d8549ba91311dfd97e47d05 schema:name dimensions_id
    104 schema:value pub.1035946656
    105 rdf:type schema:PropertyValue
    106 Nee2287867f5347229548939bdde51457 rdf:first sg:person.014133055621.61
    107 rdf:rest N1202e4231c1e41c7b828ab9861f56408
    108 Nf50f696a2e734a92882b19788c9b0676 schema:name Springer Nature - SN SciGraph project
    109 rdf:type schema:Organization
    110 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Chemical Sciences
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Physical Chemistry (incl. Structural)
    115 rdf:type schema:DefinedTerm
    116 sg:journal.1053731 schema:issn 2008-9244
    117 2193-8865
    118 schema:name Journal of Nanostructure in Chemistry
    119 schema:publisher Springer Nature
    120 rdf:type schema:Periodical
    121 sg:person.014133055621.61 schema:affiliation grid-institutes:grid.411468.e
    122 schema:familyName Abbasi
    123 schema:givenName Amirali
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133055621.61
    125 rdf:type schema:Person
    126 sg:person.014264100262.28 schema:affiliation grid-institutes:grid.411468.e
    127 schema:familyName Sardroodi
    128 schema:givenName Jaber Jahanbin
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264100262.28
    130 rdf:type schema:Person
    131 sg:pub.10.1007/s10853-010-4242-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017438483
    132 https://doi.org/10.1007/s10853-010-4242-9
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1038/nnano.2010.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704758
    135 https://doi.org/10.1038/nnano.2010.279
    136 rdf:type schema:CreativeWork
    137 grid-institutes:grid.411468.e schema:alternateName Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran
    138 schema:name Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran
    139 Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
    140 Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran
    141 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...