Theoretical study of the adsorption of NOx on TiO2/MoS2 nanocomposites: a comparison between undoped and N-doped nanocomposites View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-10-04

AUTHORS

Amirali Abbasi, Jaber Jahanbin Sardroodi

ABSTRACT

First-principle calculations within density functional theory were performed to investigate the interactions of NO and NO2 molecules with TiO2/MoS2 nanocomposites. Given the need to further comprehend the behavior of the NOx molecules positioned between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems consisting of the NOx molecule oriented at appropriate positions between the nanoparticle and MoS2 monolayer. The structural properties, such as bond lengths, bond angles, adsorption energies and Mulliken population analysis, and the electronic properties, including the density of states and molecular orbitals, were also analyzed in detail. The results indicate that the interactions between NOx molecules and N-doped TiO2 in TiO2-N/MoS2 nanocomposites are stronger than those between gas molecules and undoped TiO2 in TiO2/MoS2 nanocomposites, which reveal that the N-doping helps to strengthen the interaction of toxic gas molecules with hybrid TiO2/MoS2 nanocomposites. The N-doped TiO2/MoS2 nanocomposites have higher sensing capabilities than the undoped ones, and the interaction of NOx molecules with N-doped nanocomposites is more favorable in energy than the interaction with undoped nanocomposites. Therefore, the obtained results also present a theoretical basis for the potential application of TiO2/MoS2 nanocomposite as an extremely sensitive gas sensor for NO and NO2 molecules.Graphical Abstract More... »

PAGES

309-327

References to SciGraph publications

  • 2010-01-27. Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange in JOURNAL OF MATERIALS SCIENCE
  • 2011-01-30. Single-layer MoS2 transistors in NATURE NANOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40097-016-0204-3

    DOI

    http://dx.doi.org/10.1007/s40097-016-0204-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035946656


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411468.e", 
              "name": [
                "Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran", 
                "Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran", 
                "Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abbasi", 
            "givenName": "Amirali", 
            "id": "sg:person.014133055621.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133055621.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411468.e", 
              "name": [
                "Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran", 
                "Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran", 
                "Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sardroodi", 
            "givenName": "Jaber Jahanbin", 
            "id": "sg:person.014264100262.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264100262.28"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nnano.2010.279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047704758", 
              "https://doi.org/10.1038/nnano.2010.279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10853-010-4242-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017438483", 
              "https://doi.org/10.1007/s10853-010-4242-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-10-04", 
        "datePublishedReg": "2016-10-04", 
        "description": "First-principle calculations within density functional theory were performed to investigate the interactions of NO and NO2 molecules with TiO2/MoS2 nanocomposites. Given the need to further comprehend the behavior of the NOx molecules positioned between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems consisting of the NOx molecule oriented at appropriate positions between the nanoparticle and MoS2 monolayer. The structural properties, such as bond lengths, bond angles, adsorption energies and Mulliken population analysis, and the electronic properties, including the density of states and molecular orbitals, were also analyzed in detail. The results indicate that the interactions between NOx molecules and N-doped TiO2 in TiO2-N/MoS2 nanocomposites are stronger than those between gas molecules and undoped TiO2 in TiO2/MoS2 nanocomposites, which reveal that the N-doping helps to strengthen the interaction of toxic gas molecules with hybrid TiO2/MoS2 nanocomposites. The N-doped TiO2/MoS2 nanocomposites have higher sensing capabilities than the undoped ones, and the interaction of NOx molecules with N-doped nanocomposites is more favorable in energy than the interaction with undoped nanocomposites. Therefore, the obtained results also present a theoretical basis for the potential application of TiO2/MoS2 nanocomposite as an extremely sensitive gas sensor for NO and NO2 molecules.Graphical Abstract", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s40097-016-0204-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1053731", 
            "issn": [
              "2008-9244", 
              "2193-8865"
            ], 
            "name": "Journal of Nanostructure in Chemistry", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "TiO2/MoS2 nanocomposites", 
          "NOx molecules", 
          "MoS2 nanocomposites", 
          "NO2 molecules", 
          "gas molecules", 
          "toxic gas molecules", 
          "adsorption of NOx", 
          "sensitive gas sensor", 
          "Mulliken population analysis", 
          "MoS2 monolayer", 
          "interaction of NO", 
          "high sensing capability", 
          "first-principles calculations", 
          "density functional theory", 
          "adsorption energy", 
          "TiO2 nanoparticles", 
          "molecular orbitals", 
          "bond angles", 
          "bond lengths", 
          "electronic properties", 
          "undoped ones", 
          "undoped nanocomposite", 
          "gas sensors", 
          "nanocomposites", 
          "functional theory", 
          "structural properties", 
          "theoretical study", 
          "molecules", 
          "nanoparticles", 
          "density of states", 
          "potential applications", 
          "TiO2", 
          "population analysis", 
          "monolayers", 
          "adsorption", 
          "NO", 
          "properties", 
          "sensing capabilities", 
          "orbitals", 
          "doping", 
          "interaction", 
          "energy", 
          "NOx", 
          "calculations", 
          "sensors", 
          "appropriate position", 
          "density", 
          "applications", 
          "complex systems", 
          "angle", 
          "behavior", 
          "capability", 
          "state", 
          "detail", 
          "results", 
          "length", 
          "analysis", 
          "basis", 
          "system", 
          "theoretical basis", 
          "position", 
          "comparison", 
          "one", 
          "study", 
          "theory", 
          "need", 
          "TiO2-N/MoS2 nanocomposites", 
          "hybrid TiO2/MoS2 nanocomposites", 
          "Graphical Abstract Theoretical study", 
          "Abstract Theoretical study"
        ], 
        "name": "Theoretical study of the adsorption of NOx on TiO2/MoS2 nanocomposites: a comparison between undoped and N-doped nanocomposites", 
        "pagination": "309-327", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035946656"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40097-016-0204-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40097-016-0204-3", 
          "https://app.dimensions.ai/details/publication/pub.1035946656"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_703.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s40097-016-0204-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40097-016-0204-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40097-016-0204-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40097-016-0204-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40097-016-0204-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    145 TRIPLES      22 PREDICATES      97 URIs      87 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40097-016-0204-3 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Nd67a15ebca324e14899afd48eee0d583
    4 schema:citation sg:pub.10.1007/s10853-010-4242-9
    5 sg:pub.10.1038/nnano.2010.279
    6 schema:datePublished 2016-10-04
    7 schema:datePublishedReg 2016-10-04
    8 schema:description First-principle calculations within density functional theory were performed to investigate the interactions of NO and NO2 molecules with TiO2/MoS2 nanocomposites. Given the need to further comprehend the behavior of the NOx molecules positioned between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems consisting of the NOx molecule oriented at appropriate positions between the nanoparticle and MoS2 monolayer. The structural properties, such as bond lengths, bond angles, adsorption energies and Mulliken population analysis, and the electronic properties, including the density of states and molecular orbitals, were also analyzed in detail. The results indicate that the interactions between NOx molecules and N-doped TiO2 in TiO2-N/MoS2 nanocomposites are stronger than those between gas molecules and undoped TiO2 in TiO2/MoS2 nanocomposites, which reveal that the N-doping helps to strengthen the interaction of toxic gas molecules with hybrid TiO2/MoS2 nanocomposites. The N-doped TiO2/MoS2 nanocomposites have higher sensing capabilities than the undoped ones, and the interaction of NOx molecules with N-doped nanocomposites is more favorable in energy than the interaction with undoped nanocomposites. Therefore, the obtained results also present a theoretical basis for the potential application of TiO2/MoS2 nanocomposite as an extremely sensitive gas sensor for NO and NO2 molecules.Graphical Abstract
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree true
    12 schema:isPartOf N10b3d255b7ce4d51ad4377e61d7e6d7f
    13 Nb320c5e4e66140828249df168ded78c2
    14 sg:journal.1053731
    15 schema:keywords Abstract Theoretical study
    16 Graphical Abstract Theoretical study
    17 MoS2 monolayer
    18 MoS2 nanocomposites
    19 Mulliken population analysis
    20 NO
    21 NO2 molecules
    22 NOx
    23 NOx molecules
    24 TiO2
    25 TiO2 nanoparticles
    26 TiO2-N/MoS2 nanocomposites
    27 TiO2/MoS2 nanocomposites
    28 adsorption
    29 adsorption energy
    30 adsorption of NOx
    31 analysis
    32 angle
    33 applications
    34 appropriate position
    35 basis
    36 behavior
    37 bond angles
    38 bond lengths
    39 calculations
    40 capability
    41 comparison
    42 complex systems
    43 density
    44 density functional theory
    45 density of states
    46 detail
    47 doping
    48 electronic properties
    49 energy
    50 first-principles calculations
    51 functional theory
    52 gas molecules
    53 gas sensors
    54 high sensing capability
    55 hybrid TiO2/MoS2 nanocomposites
    56 interaction
    57 interaction of NO
    58 length
    59 molecular orbitals
    60 molecules
    61 monolayers
    62 nanocomposites
    63 nanoparticles
    64 need
    65 one
    66 orbitals
    67 population analysis
    68 position
    69 potential applications
    70 properties
    71 results
    72 sensing capabilities
    73 sensitive gas sensor
    74 sensors
    75 state
    76 structural properties
    77 study
    78 system
    79 theoretical basis
    80 theoretical study
    81 theory
    82 toxic gas molecules
    83 undoped nanocomposite
    84 undoped ones
    85 schema:name Theoretical study of the adsorption of NOx on TiO2/MoS2 nanocomposites: a comparison between undoped and N-doped nanocomposites
    86 schema:pagination 309-327
    87 schema:productId N68fc29a8a676440fb897b1212aaff5f1
    88 N7281a7885709411eaf3eed73e34a5c6d
    89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035946656
    90 https://doi.org/10.1007/s40097-016-0204-3
    91 schema:sdDatePublished 2022-01-01T18:41
    92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    93 schema:sdPublisher N111298596d08411e971873c975f95ae9
    94 schema:url https://doi.org/10.1007/s40097-016-0204-3
    95 sgo:license sg:explorer/license/
    96 sgo:sdDataset articles
    97 rdf:type schema:ScholarlyArticle
    98 N10b3d255b7ce4d51ad4377e61d7e6d7f schema:issueNumber 4
    99 rdf:type schema:PublicationIssue
    100 N111298596d08411e971873c975f95ae9 schema:name Springer Nature - SN SciGraph project
    101 rdf:type schema:Organization
    102 N68fc29a8a676440fb897b1212aaff5f1 schema:name doi
    103 schema:value 10.1007/s40097-016-0204-3
    104 rdf:type schema:PropertyValue
    105 N7281a7885709411eaf3eed73e34a5c6d schema:name dimensions_id
    106 schema:value pub.1035946656
    107 rdf:type schema:PropertyValue
    108 Nb320c5e4e66140828249df168ded78c2 schema:volumeNumber 6
    109 rdf:type schema:PublicationVolume
    110 Nd67a15ebca324e14899afd48eee0d583 rdf:first sg:person.014133055621.61
    111 rdf:rest Ndce732912cfe47b4b253012fa0b31fe8
    112 Ndce732912cfe47b4b253012fa0b31fe8 rdf:first sg:person.014264100262.28
    113 rdf:rest rdf:nil
    114 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Chemical Sciences
    116 rdf:type schema:DefinedTerm
    117 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Physical Chemistry (incl. Structural)
    119 rdf:type schema:DefinedTerm
    120 sg:journal.1053731 schema:issn 2008-9244
    121 2193-8865
    122 schema:name Journal of Nanostructure in Chemistry
    123 schema:publisher Springer Nature
    124 rdf:type schema:Periodical
    125 sg:person.014133055621.61 schema:affiliation grid-institutes:grid.411468.e
    126 schema:familyName Abbasi
    127 schema:givenName Amirali
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133055621.61
    129 rdf:type schema:Person
    130 sg:person.014264100262.28 schema:affiliation grid-institutes:grid.411468.e
    131 schema:familyName Sardroodi
    132 schema:givenName Jaber Jahanbin
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264100262.28
    134 rdf:type schema:Person
    135 sg:pub.10.1007/s10853-010-4242-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017438483
    136 https://doi.org/10.1007/s10853-010-4242-9
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1038/nnano.2010.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704758
    139 https://doi.org/10.1038/nnano.2010.279
    140 rdf:type schema:CreativeWork
    141 grid-institutes:grid.411468.e schema:alternateName Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran
    142 schema:name Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran
    143 Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
    144 Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran
    145 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...