On the solutions of three-point boundary value problems using variational-fixed point iteration method

Ontology type: schema:ScholarlyArticle      Open Access: True

Article Info

DATE

2016-04-06

AUTHORS ABSTRACT

Given a three-point fourth-order boundary value problems y(iv)+p(x)y″′+q(x)y″+r(x)y′+s(x)y=f(x),a≤x≤b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{aligned} y^{(iv)}+p(x)y^{\prime \prime \prime }+q(x)y^{\prime \prime }+r(x)y^{\prime }+s(x)y=f(x),a \le x \le b \end{aligned}\end{document}such that y(a)=y(b)=y″(b)=y″(α)=0,a≤α≤b;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{aligned} y(a)=y(b)=y^{\prime \prime }(b)=y^{\prime \prime }(\alpha )=0,a \le \alpha \le b; \end{aligned}\end{document}where p,q,r,s,f∈C[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p,q,r,s,f \in C[a,b]$$\end{document}, we combine the application of variational iteration method and fixed point iteration process to construct an iterative scheme called variational-fixed point iteration method that approximates the solution of three-point boundary value problems. The success of the variational or weighted residual method of approximation from a practical point of view depends on the suitable selection of the basis function. The method is self correcting one and leads to fast convergence. Problems were experimented to show the effectiveness and accuracy of the proposed method. More... »

PAGES

33-40

References to SciGraph publications

• 2013-03-12. The new modified Ishikawa iteration method for the approximate solution of different types of differential equations in FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING
• Journal

TITLE

Mathematical Sciences

ISSUE

1-2

VOLUME

10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40096-016-0175-z

DOI

http://dx.doi.org/10.1007/s40096-016-0175-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024918413

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia, UPM, 43400, Selangor, Serdang, Malaysia",
"id": "http://www.grid.ac/institutes/grid.11142.37",
"name": [
"Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia, UPM, 43400, Selangor, Serdang, Malaysia"
],
"type": "Organization"
},
"familyName": "Kilicman",
"givenName": "A.",
"id": "sg:person.014231676063.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231676063.05"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia, UPM, 43400, Selangor, Serdang, Malaysia",
"id": "http://www.grid.ac/institutes/grid.11142.37",
"name": [
"Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia, UPM, 43400, Selangor, Serdang, Malaysia"
],
"type": "Organization"
},
"givenName": "M.",
"id": "sg:person.012343563063.71",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012343563063.71"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1186/1687-1812-2013-52",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032329283",
"https://doi.org/10.1186/1687-1812-2013-52"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-04-06",
"datePublishedReg": "2016-04-06",
"description": "Given a three-point fourth-order boundary value problems y(iv)+p(x)y\u2033\u2032+q(x)y\u2033+r(x)y\u2032+s(x)y=f(x),a\u2264x\u2264b\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\\begin{aligned} y^{(iv)}+p(x)y^{\\prime \\prime \\prime }+q(x)y^{\\prime \\prime }+r(x)y^{\\prime }+s(x)y=f(x),a \\le x \\le b \\end{aligned}\\end{document}such that y(a)=y(b)=y\u2033(b)=y\u2033(\u03b1)=0,a\u2264\u03b1\u2264b;\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\\begin{aligned} y(a)=y(b)=y^{\\prime \\prime }(b)=y^{\\prime \\prime }(\\alpha )=0,a \\le \\alpha \\le b; \\end{aligned}\\end{document}where p,q,r,s,f\u2208C[a,b]\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$p,q,r,s,f \\in C[a,b]$$\\end{document}, we combine the application of variational iteration method and fixed point iteration process to construct an iterative scheme called variational-fixed point iteration method that approximates the solution of three-point boundary value problems. The success of the variational or weighted residual method of approximation from a practical point of view depends on the suitable selection of the basis function. The method is self correcting one and leads to fast convergence. Problems were experimented to show the effectiveness and accuracy of the proposed method.",
"genre": "article",
"id": "sg:pub.10.1007/s40096-016-0175-z",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1313759",
"issn": [
"2008-1359",
"2251-7456"
],
"name": "Mathematical Sciences",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1-2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"boundary value problem",
"three-point boundary value problem",
"value problem",
"iteration method",
"point iteration method",
"variational iteration method",
"fourth-order boundary value problems",
"point iteration process",
"iterative scheme",
"residual method",
"fast convergence",
"iteration process",
"basis functions",
"practical point",
"problem",
"suitable selection",
"approximation",
"solution",
"convergence",
"scheme",
"accuracy",
"point",
"applications",
"function",
"effectiveness",
"selection",
"process",
"view",
"self",
"success",
"method"
],
"name": "On the solutions of three-point boundary value problems using variational-fixed point iteration method",
"pagination": "33-40",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1024918413"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s40096-016-0175-z"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s40096-016-0175-z",
"https://app.dimensions.ai/details/publication/pub.1024918413"
],
"sdDataset": "articles",
"sdDatePublished": "2022-12-01T06:35",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_710.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s40096-016-0175-z"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40096-016-0175-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40096-016-0175-z'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40096-016-0175-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40096-016-0175-z'

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      21 PREDICATES      56 URIs      47 LITERALS      6 BLANK NODES

Subject Predicate Object
2 anzsrc-for:0103
3 schema:author N05fa741a699d464dacc44ac235d4f97f
4 schema:citation sg:pub.10.1186/1687-1812-2013-52
5 schema:datePublished 2016-04-06
6 schema:datePublishedReg 2016-04-06
7 schema:description Given a three-point fourth-order boundary value problems y(iv)+p(x)y″′+q(x)y″+r(x)y′+s(x)y=f(x),a≤x≤b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{aligned} y^{(iv)}+p(x)y^{\prime \prime \prime }+q(x)y^{\prime \prime }+r(x)y^{\prime }+s(x)y=f(x),a \le x \le b \end{aligned}\end{document}such that y(a)=y(b)=y″(b)=y″(α)=0,a≤α≤b;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{aligned} y(a)=y(b)=y^{\prime \prime }(b)=y^{\prime \prime }(\alpha )=0,a \le \alpha \le b; \end{aligned}\end{document}where p,q,r,s,f∈C[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p,q,r,s,f \in C[a,b]$$\end{document}, we combine the application of variational iteration method and fixed point iteration process to construct an iterative scheme called variational-fixed point iteration method that approximates the solution of three-point boundary value problems. The success of the variational or weighted residual method of approximation from a practical point of view depends on the suitable selection of the basis function. The method is self correcting one and leads to fast convergence. Problems were experimented to show the effectiveness and accuracy of the proposed method.
8 schema:genre article
9 schema:isAccessibleForFree true
11 N9091bf3b884e4d49a95c18355df78882
12 sg:journal.1313759
13 schema:keywords accuracy
14 applications
15 approximation
16 basis functions
17 boundary value problem
18 convergence
19 effectiveness
20 fast convergence
21 fourth-order boundary value problems
22 function
23 iteration method
24 iteration process
25 iterative scheme
26 method
27 point
28 point iteration method
29 point iteration process
30 practical point
31 problem
32 process
33 residual method
34 scheme
35 selection
36 self
37 solution
38 success
39 suitable selection
40 three-point boundary value problem
41 value problem
42 variational iteration method
43 view
44 schema:name On the solutions of three-point boundary value problems using variational-fixed point iteration method
45 schema:pagination 33-40
46 schema:productId N0cfffa903387454496e967e26d2c8eb1
47 Nb7521c543b4f4896a651fc1b10896c18
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024918413
49 https://doi.org/10.1007/s40096-016-0175-z
50 schema:sdDatePublished 2022-12-01T06:35
53 schema:url https://doi.org/10.1007/s40096-016-0175-z
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N050c885069fa46fbbeb89f56d0e71763 rdf:first sg:person.012343563063.71
58 rdf:rest rdf:nil
59 N05fa741a699d464dacc44ac235d4f97f rdf:first sg:person.014231676063.05
60 rdf:rest N050c885069fa46fbbeb89f56d0e71763
61 N0cfffa903387454496e967e26d2c8eb1 schema:name dimensions_id
62 schema:value pub.1024918413
63 rdf:type schema:PropertyValue
65 rdf:type schema:PublicationIssue
67 rdf:type schema:PublicationVolume
68 N966b13ad984b47db8109d65207bf3db5 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nb7521c543b4f4896a651fc1b10896c18 schema:name doi
71 schema:value 10.1007/s40096-016-0175-z
72 rdf:type schema:PropertyValue
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
77 schema:name Numerical and Computational Mathematics
78 rdf:type schema:DefinedTerm
79 sg:journal.1313759 schema:issn 2008-1359
80 2251-7456
81 schema:name Mathematical Sciences
82 schema:publisher Springer Nature
83 rdf:type schema:Periodical
84 sg:person.012343563063.71 schema:affiliation grid-institutes:grid.11142.37
86 schema:givenName M.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012343563063.71
88 rdf:type schema:Person
89 sg:person.014231676063.05 schema:affiliation grid-institutes:grid.11142.37
90 schema:familyName Kilicman
91 schema:givenName A.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231676063.05
93 rdf:type schema:Person
94 sg:pub.10.1186/1687-1812-2013-52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032329283
95 https://doi.org/10.1186/1687-1812-2013-52
96 rdf:type schema:CreativeWork
97 grid-institutes:grid.11142.37 schema:alternateName Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia, UPM, 43400, Selangor, Serdang, Malaysia
98 schema:name Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia, UPM, 43400, Selangor, Serdang, Malaysia
99 rdf:type schema:Organization