Multi-objective modeling, uncertainty analysis, and optimization of reversible solid oxide cells View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-09

AUTHORS

Zahra Salehi, Iman Gholaminezhad

ABSTRACT

Reversible solid oxide cells can provide efficient and cost-effective scheme for electrical-energy storage applications. However, this technology faces many challenges from material development to system-level operational parameters , which should be tackle for practical purposes. Accordingly, this study focuses on developing novel robust artificial intelligence-based black-box models to optimize operational variables of the system. A genetic-programming algorithm is used for Pareto modeling of reversible solid oxide cells in a multi-objective fashion based on experimental input–output data. The robustness of the obtained optimal model evaluated using Monte Carlo simulations technique. An optimization study adopted to optimize the operating parameters, such as temperature and fuel composition using a differential evolution algorithm. The objective functions that have been considered for Pareto multi-objective modeling process are training error and model complexity. In addition, the discrepancy between maximum and minimum output voltage in the whole operation of the system is chosen as the optimization process objective function. The robustness of the optimal trade-off model is shown in terms of statistical indices for varied uncertainty levels from 1 to 10%. The optimized operational condition based on the suggested model reveals optimal intermediate temperature of 762 °C and fuel mixture of about 29% H2, 25% H2O, and 14% CO. More... »

PAGES

295-304

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40095-018-0269-5

DOI

http://dx.doi.org/10.1007/s40095-018-0269-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101627419


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shiraz University", 
          "id": "https://www.grid.ac/institutes/grid.412573.6", 
          "name": [
            "Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salehi", 
        "givenName": "Zahra", 
        "id": "sg:person.012306401733.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012306401733.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kanagawa University", 
          "id": "https://www.grid.ac/institutes/grid.411995.1", 
          "name": [
            "Department of Materials and Life Chemistry, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, 221-8686, Yokohama, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gholaminezhad", 
        "givenName": "Iman", 
        "id": "sg:person.07715650111.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07715650111.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00170-015-8238-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000283660", 
          "https://doi.org/10.1007/s00170-015-8238-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-015-8238-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000283660", 
          "https://doi.org/10.1007/s00170-015-8238-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002263966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2251-6832-3-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004294632", 
          "https://doi.org/10.1186/2251-6832-3-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2014.01.186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009170050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40095-014-0153-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010938525", 
          "https://doi.org/10.1007/s40095-014-0153-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40095-014-0153-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010938525", 
          "https://doi.org/10.1007/s40095-014-0153-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2009.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011319691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2011.10.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011740168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-015-1275-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012807526", 
          "https://doi.org/10.1007/s00158-015-1275-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-015-1275-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012807526", 
          "https://doi.org/10.1007/s00158-015-1275-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/fuce.201100140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012925315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008202821328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012950914", 
          "https://doi.org/10.1023/a:1008202821328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/2.076208jes", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013842192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2015.09.093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015051626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2016.11.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016891504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2010.09.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017801261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2010.04.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025128463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207721.2014.945983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027168363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2007.11.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031626017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2011.06.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049451436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2016.08.213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049858666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2016.08.213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049858666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2016.08.213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049858666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2014.10.205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050266080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2015.02.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050515696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2012.08.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052104581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15435070903372577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052215247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4822253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058082946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4007669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062147996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954406214568823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063884915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954406214568823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063884915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijict.2008.024015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067462602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2017.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084525747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2017.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092196274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470316511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109496281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109496281", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "Reversible solid oxide cells can provide efficient and cost-effective scheme for electrical-energy storage applications. However, this technology faces many challenges from material development to system-level operational parameters , which should be tackle for practical purposes. Accordingly, this study focuses on developing novel robust artificial intelligence-based black-box models to optimize operational variables of the system. A genetic-programming algorithm is used for Pareto modeling of reversible solid oxide cells in a multi-objective fashion based on experimental input\u2013output data. The robustness of the obtained optimal model evaluated using Monte Carlo simulations technique. An optimization study adopted to optimize the operating parameters, such as temperature and fuel composition using a differential evolution algorithm. The objective functions that have been considered for Pareto multi-objective modeling process are training error and model complexity. In addition, the discrepancy between maximum and minimum output voltage in the whole operation of the system is chosen as the optimization process objective function. The robustness of the optimal trade-off model is shown in terms of statistical indices for varied uncertainty levels from 1 to 10%. The optimized operational condition based on the suggested model reveals optimal intermediate temperature of 762 \u00b0C and fuel mixture of about 29% H2, 25% H2O, and 14% CO.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40095-018-0269-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136564", 
        "issn": [
          "2008-9163", 
          "2251-6832"
        ], 
        "name": "International Journal of Energy and Environmental Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Multi-objective modeling, uncertainty analysis, and optimization of reversible solid oxide cells", 
    "pagination": "295-304", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bd77debfa1a2f9975b0229f19fcdf3e89300032514f19291b353a291798d3240"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40095-018-0269-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101627419"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40095-018-0269-5", 
      "https://app.dimensions.ai/details/publication/pub.1101627419"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53984_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40095-018-0269-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40095-018-0269-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40095-018-0269-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40095-018-0269-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40095-018-0269-5'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40095-018-0269-5 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Na540f764e34546f987a07f35bab01cb3
4 schema:citation sg:pub.10.1007/s00158-015-1275-3
5 sg:pub.10.1007/s00170-015-8238-0
6 sg:pub.10.1007/s40095-014-0153-x
7 sg:pub.10.1023/a:1008202821328
8 sg:pub.10.1186/2251-6832-3-2
9 https://app.dimensions.ai/details/publication/pub.1109496281
10 https://doi.org/10.1002/9780470316511
11 https://doi.org/10.1002/fuce.201100140
12 https://doi.org/10.1016/j.cej.2010.09.041
13 https://doi.org/10.1016/j.enconman.2017.04.008
14 https://doi.org/10.1016/j.enconman.2017.10.011
15 https://doi.org/10.1016/j.energy.2009.02.012
16 https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.067
17 https://doi.org/10.1016/j.ijhydene.2011.06.108
18 https://doi.org/10.1016/j.ijhydene.2011.10.051
19 https://doi.org/10.1016/j.ijhydene.2012.08.101
20 https://doi.org/10.1016/j.ijhydene.2014.01.186
21 https://doi.org/10.1016/j.ijhydene.2016.08.213
22 https://doi.org/10.1016/j.ijhydene.2016.11.151
23 https://doi.org/10.1016/j.jpowsour.2007.11.057
24 https://doi.org/10.1016/j.jpowsour.2010.04.018
25 https://doi.org/10.1016/j.jpowsour.2014.10.205
26 https://doi.org/10.1016/j.jpowsour.2015.02.113
27 https://doi.org/10.1016/j.jpowsour.2015.09.093
28 https://doi.org/10.1063/1.4822253
29 https://doi.org/10.1080/00207721.2014.945983
30 https://doi.org/10.1080/15435070903372577
31 https://doi.org/10.1115/1.4007669
32 https://doi.org/10.1149/2.076208jes
33 https://doi.org/10.1177/0954406214568823
34 https://doi.org/10.1504/ijict.2008.024015
35 schema:datePublished 2018-09
36 schema:datePublishedReg 2018-09-01
37 schema:description Reversible solid oxide cells can provide efficient and cost-effective scheme for electrical-energy storage applications. However, this technology faces many challenges from material development to system-level operational parameters , which should be tackle for practical purposes. Accordingly, this study focuses on developing novel robust artificial intelligence-based black-box models to optimize operational variables of the system. A genetic-programming algorithm is used for Pareto modeling of reversible solid oxide cells in a multi-objective fashion based on experimental input–output data. The robustness of the obtained optimal model evaluated using Monte Carlo simulations technique. An optimization study adopted to optimize the operating parameters, such as temperature and fuel composition using a differential evolution algorithm. The objective functions that have been considered for Pareto multi-objective modeling process are training error and model complexity. In addition, the discrepancy between maximum and minimum output voltage in the whole operation of the system is chosen as the optimization process objective function. The robustness of the optimal trade-off model is shown in terms of statistical indices for varied uncertainty levels from 1 to 10%. The optimized operational condition based on the suggested model reveals optimal intermediate temperature of 762 °C and fuel mixture of about 29% H2, 25% H2O, and 14% CO.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N62166763478d4d71ad77052fb4f413e4
42 N9af0753b6ca948de9265012827c7f5a4
43 sg:journal.1136564
44 schema:name Multi-objective modeling, uncertainty analysis, and optimization of reversible solid oxide cells
45 schema:pagination 295-304
46 schema:productId N09e43006f64e4a3aaa063560d8093219
47 Nb1628e8c6bbe4e3293451e29df01c76d
48 Nf5df5a00a6c04e26b3ef3da7f353e2f3
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101627419
50 https://doi.org/10.1007/s40095-018-0269-5
51 schema:sdDatePublished 2019-04-11T12:11
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Ne74b1b10a0c04a538f23ba63e0514de0
54 schema:url https://link.springer.com/10.1007%2Fs40095-018-0269-5
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N09e43006f64e4a3aaa063560d8093219 schema:name doi
59 schema:value 10.1007/s40095-018-0269-5
60 rdf:type schema:PropertyValue
61 N62166763478d4d71ad77052fb4f413e4 schema:issueNumber 3
62 rdf:type schema:PublicationIssue
63 N9af0753b6ca948de9265012827c7f5a4 schema:volumeNumber 9
64 rdf:type schema:PublicationVolume
65 Na540f764e34546f987a07f35bab01cb3 rdf:first sg:person.012306401733.07
66 rdf:rest Nfcaea39817e240c8b00eab932a23e6e6
67 Nb1628e8c6bbe4e3293451e29df01c76d schema:name readcube_id
68 schema:value bd77debfa1a2f9975b0229f19fcdf3e89300032514f19291b353a291798d3240
69 rdf:type schema:PropertyValue
70 Ne74b1b10a0c04a538f23ba63e0514de0 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Nf5df5a00a6c04e26b3ef3da7f353e2f3 schema:name dimensions_id
73 schema:value pub.1101627419
74 rdf:type schema:PropertyValue
75 Nfcaea39817e240c8b00eab932a23e6e6 rdf:first sg:person.07715650111.92
76 rdf:rest rdf:nil
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
81 schema:name Applied Mathematics
82 rdf:type schema:DefinedTerm
83 sg:journal.1136564 schema:issn 2008-9163
84 2251-6832
85 schema:name International Journal of Energy and Environmental Engineering
86 rdf:type schema:Periodical
87 sg:person.012306401733.07 schema:affiliation https://www.grid.ac/institutes/grid.412573.6
88 schema:familyName Salehi
89 schema:givenName Zahra
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012306401733.07
91 rdf:type schema:Person
92 sg:person.07715650111.92 schema:affiliation https://www.grid.ac/institutes/grid.411995.1
93 schema:familyName Gholaminezhad
94 schema:givenName Iman
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07715650111.92
96 rdf:type schema:Person
97 sg:pub.10.1007/s00158-015-1275-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012807526
98 https://doi.org/10.1007/s00158-015-1275-3
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s00170-015-8238-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000283660
101 https://doi.org/10.1007/s00170-015-8238-0
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s40095-014-0153-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010938525
104 https://doi.org/10.1007/s40095-014-0153-x
105 rdf:type schema:CreativeWork
106 sg:pub.10.1023/a:1008202821328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012950914
107 https://doi.org/10.1023/a:1008202821328
108 rdf:type schema:CreativeWork
109 sg:pub.10.1186/2251-6832-3-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004294632
110 https://doi.org/10.1186/2251-6832-3-2
111 rdf:type schema:CreativeWork
112 https://app.dimensions.ai/details/publication/pub.1109496281 schema:CreativeWork
113 https://doi.org/10.1002/9780470316511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109496281
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/fuce.201100140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012925315
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.cej.2010.09.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017801261
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.enconman.2017.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084525747
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.enconman.2017.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092196274
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.energy.2009.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011319691
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002263966
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.ijhydene.2011.06.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049451436
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.ijhydene.2011.10.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011740168
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.ijhydene.2012.08.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052104581
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.ijhydene.2014.01.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009170050
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.ijhydene.2016.08.213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049858666
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.ijhydene.2016.11.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016891504
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jpowsour.2007.11.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031626017
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jpowsour.2010.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025128463
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jpowsour.2014.10.205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050266080
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jpowsour.2015.02.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050515696
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.jpowsour.2015.09.093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015051626
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.4822253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058082946
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1080/00207721.2014.945983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027168363
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1080/15435070903372577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052215247
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1115/1.4007669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062147996
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1149/2.076208jes schema:sameAs https://app.dimensions.ai/details/publication/pub.1013842192
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1177/0954406214568823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063884915
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1504/ijict.2008.024015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067462602
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.411995.1 schema:alternateName Kanagawa University
164 schema:name Department of Materials and Life Chemistry, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, 221-8686, Yokohama, Kanagawa, Japan
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.412573.6 schema:alternateName Shiraz University
167 schema:name Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...