Numerical model for estimating time-dependent reliability of a corroding pipeline over its lifetime View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03

AUTHORS

Mourad Nahal, Rabia Khelif

ABSTRACT

This work aims to evaluate time-dependent reliability of a pipeline under corrosion impact over its lifetime. A finite element corrosion model was proposed, and an empirical power low model is also used and coupled with a probabilistic model for evaluating reliability index about a limit state function. The failure probability of structure was determinate for deferent corrosion rate (low, moderate and high rates), considering corrosion depth. Form method and Monte Carlo simulation are used for evaluating the structure reliability. The impact of applying both effect of corrosion and residual stress is shown which is appears a significant failure probability of the studied pipeline. The found results are analyzed and discussed. More... »

PAGES

1-7

References to SciGraph publications

  • 1966-12. Hole-drilling strain-gage method of measuring residual stresses in EXPERIMENTAL MECHANICS
  • 2013-02. Mechanical reliability analysis of tubes intended for hydrocarbons in JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
  • 2002-07. Failure probability of corrosion pipeline with varying boundary condition in KSME INTERNATIONAL JOURNAL
  • 2015-11. Pipelines Reliability Analysis Under Corrosion Effect and Residual Stress in ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40091-018-0210-4

    DOI

    http://dx.doi.org/10.1007/s40091-018-0210-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110259071


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "University of Souk Ahras, Po Box 1553, 41000, Souk Ahras, Algeria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nahal", 
            "givenName": "Mourad", 
            "id": "sg:person.015750311243.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015750311243.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Badji Mokhtar University", 
              "id": "https://www.grid.ac/institutes/grid.440473.0", 
              "name": [
                "Badji Mokhtar University, BP 12, 23000, Annaba, Algeria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khelif", 
            "givenName": "Rabia", 
            "id": "sg:person.011435561443.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011435561443.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ijpvp.2008.11.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000914773"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ress.2013.05.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001144375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijpvp.2012.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001897809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.corsci.2013.07.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002865470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compstruc.2013.10.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003680063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2011.08.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003992796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12206-012-1265-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008949963", 
              "https://doi.org/10.1007/s12206-012-1265-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engfailanal.2011.12.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011468238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engfailanal.2013.03.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011900717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5006/1.3277545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012243068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02949716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019909768", 
              "https://doi.org/10.1007/bf02949716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2013.03.055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020064908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijpvp.2016.11.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020779181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02326825", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020947149", 
              "https://doi.org/10.1007/bf02326825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.petrol.2008.12.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027793916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apor.2009.07.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028514549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13369-015-1723-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032047225", 
              "https://doi.org/10.1007/s13369-015-1723-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijpvp.2011.09.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037221251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5006/1.3319138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037892153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engfailanal.2009.10.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040523417"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engfailanal.2009.04.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044275798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ndteint.2011.03.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044810657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijpvp.2016.04.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049174631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijpvp.2007.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049723070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.corsci.2008.05.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049959496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engfailanal.2011.09.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050867330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)is.1943-555x.0000063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057637814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engfailanal.2017.01.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074226924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engfailanal.2017.04.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085211341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engfailanal.2017.06.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086118966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.oceaneng.2017.06.057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090288539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engfailanal.2017.07.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090571510"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "This work aims to evaluate time-dependent reliability of a pipeline under corrosion impact over its lifetime. A finite element corrosion model was proposed, and an empirical power low model is also used and coupled with a probabilistic model for evaluating reliability index about a limit state function. The failure probability of structure was determinate for deferent corrosion rate (low, moderate and high rates), considering corrosion depth. Form method and Monte Carlo simulation are used for evaluating the structure reliability. The impact of applying both effect of corrosion and residual stress is shown which is appears a significant failure probability of the studied pipeline. The found results are analyzed and discussed.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s40091-018-0210-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136478", 
            "issn": [
              "2008-3556", 
              "2008-6695"
            ], 
            "name": "International Journal of Advanced Structural Engineering", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "name": "Numerical model for estimating time-dependent reliability of a corroding pipeline over its lifetime", 
        "pagination": "1-7", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "74d3fbff630b7ae37dee51ec790947de5fd86d1512d9261bdcb4b7371d83d5dd"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40091-018-0210-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110259071"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40091-018-0210-4", 
          "https://app.dimensions.ai/details/publication/pub.1110259071"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000357_0000000357/records_99316_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs40091-018-0210-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40091-018-0210-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40091-018-0210-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40091-018-0210-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40091-018-0210-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    170 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40091-018-0210-4 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N78adf8b033fe4cc1ad0789e6464908ad
    4 schema:citation sg:pub.10.1007/bf02326825
    5 sg:pub.10.1007/bf02949716
    6 sg:pub.10.1007/s12206-012-1265-y
    7 sg:pub.10.1007/s13369-015-1723-9
    8 https://doi.org/10.1016/j.apor.2009.07.004
    9 https://doi.org/10.1016/j.compstruc.2013.10.017
    10 https://doi.org/10.1016/j.corsci.2008.05.003
    11 https://doi.org/10.1016/j.corsci.2013.07.002
    12 https://doi.org/10.1016/j.engfailanal.2009.04.004
    13 https://doi.org/10.1016/j.engfailanal.2009.10.016
    14 https://doi.org/10.1016/j.engfailanal.2011.09.004
    15 https://doi.org/10.1016/j.engfailanal.2011.12.002
    16 https://doi.org/10.1016/j.engfailanal.2013.03.015
    17 https://doi.org/10.1016/j.engfailanal.2017.01.018
    18 https://doi.org/10.1016/j.engfailanal.2017.04.027
    19 https://doi.org/10.1016/j.engfailanal.2017.06.050
    20 https://doi.org/10.1016/j.engfailanal.2017.07.010
    21 https://doi.org/10.1016/j.ijpvp.2007.09.002
    22 https://doi.org/10.1016/j.ijpvp.2008.11.011
    23 https://doi.org/10.1016/j.ijpvp.2011.09.007
    24 https://doi.org/10.1016/j.ijpvp.2012.06.001
    25 https://doi.org/10.1016/j.ijpvp.2016.04.003
    26 https://doi.org/10.1016/j.ijpvp.2016.11.007
    27 https://doi.org/10.1016/j.matdes.2011.08.022
    28 https://doi.org/10.1016/j.matdes.2013.03.055
    29 https://doi.org/10.1016/j.ndteint.2011.03.003
    30 https://doi.org/10.1016/j.oceaneng.2017.06.057
    31 https://doi.org/10.1016/j.petrol.2008.12.023
    32 https://doi.org/10.1016/j.ress.2013.05.013
    33 https://doi.org/10.1061/(asce)is.1943-555x.0000063
    34 https://doi.org/10.5006/1.3277545
    35 https://doi.org/10.5006/1.3319138
    36 schema:datePublished 2019-03
    37 schema:datePublishedReg 2019-03-01
    38 schema:description This work aims to evaluate time-dependent reliability of a pipeline under corrosion impact over its lifetime. A finite element corrosion model was proposed, and an empirical power low model is also used and coupled with a probabilistic model for evaluating reliability index about a limit state function. The failure probability of structure was determinate for deferent corrosion rate (low, moderate and high rates), considering corrosion depth. Form method and Monte Carlo simulation are used for evaluating the structure reliability. The impact of applying both effect of corrosion and residual stress is shown which is appears a significant failure probability of the studied pipeline. The found results are analyzed and discussed.
    39 schema:genre research_article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree true
    42 schema:isPartOf N67944130be0642c2be3411cd536ac04e
    43 Nb76f5e023bb0474aa9614012d4f77b72
    44 sg:journal.1136478
    45 schema:name Numerical model for estimating time-dependent reliability of a corroding pipeline over its lifetime
    46 schema:pagination 1-7
    47 schema:productId N2fd58fdebfe542dc9096ade0b37e018a
    48 N5d89d5cda21d49f3aa98b3d0a4b0e858
    49 N9dec5467b6d6493a9da17e7fb8b01eef
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110259071
    51 https://doi.org/10.1007/s40091-018-0210-4
    52 schema:sdDatePublished 2019-04-11T11:31
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher N800c250a310f4c44a82593b557492b56
    55 schema:url https://link.springer.com/10.1007%2Fs40091-018-0210-4
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N2fd58fdebfe542dc9096ade0b37e018a schema:name readcube_id
    60 schema:value 74d3fbff630b7ae37dee51ec790947de5fd86d1512d9261bdcb4b7371d83d5dd
    61 rdf:type schema:PropertyValue
    62 N58b470fc310d4b28a706bf0dcc80fe5b schema:name University of Souk Ahras, Po Box 1553, 41000, Souk Ahras, Algeria
    63 rdf:type schema:Organization
    64 N5d89d5cda21d49f3aa98b3d0a4b0e858 schema:name dimensions_id
    65 schema:value pub.1110259071
    66 rdf:type schema:PropertyValue
    67 N67944130be0642c2be3411cd536ac04e schema:issueNumber 1
    68 rdf:type schema:PublicationIssue
    69 N733770f7af244689b1453edb149564de rdf:first sg:person.011435561443.16
    70 rdf:rest rdf:nil
    71 N78adf8b033fe4cc1ad0789e6464908ad rdf:first sg:person.015750311243.60
    72 rdf:rest N733770f7af244689b1453edb149564de
    73 N800c250a310f4c44a82593b557492b56 schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 N9dec5467b6d6493a9da17e7fb8b01eef schema:name doi
    76 schema:value 10.1007/s40091-018-0210-4
    77 rdf:type schema:PropertyValue
    78 Nb76f5e023bb0474aa9614012d4f77b72 schema:volumeNumber 11
    79 rdf:type schema:PublicationVolume
    80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Engineering
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Materials Engineering
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1136478 schema:issn 2008-3556
    87 2008-6695
    88 schema:name International Journal of Advanced Structural Engineering
    89 rdf:type schema:Periodical
    90 sg:person.011435561443.16 schema:affiliation https://www.grid.ac/institutes/grid.440473.0
    91 schema:familyName Khelif
    92 schema:givenName Rabia
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011435561443.16
    94 rdf:type schema:Person
    95 sg:person.015750311243.60 schema:affiliation N58b470fc310d4b28a706bf0dcc80fe5b
    96 schema:familyName Nahal
    97 schema:givenName Mourad
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015750311243.60
    99 rdf:type schema:Person
    100 sg:pub.10.1007/bf02326825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020947149
    101 https://doi.org/10.1007/bf02326825
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/bf02949716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019909768
    104 https://doi.org/10.1007/bf02949716
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s12206-012-1265-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1008949963
    107 https://doi.org/10.1007/s12206-012-1265-y
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s13369-015-1723-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032047225
    110 https://doi.org/10.1007/s13369-015-1723-9
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/j.apor.2009.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028514549
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.compstruc.2013.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003680063
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.corsci.2008.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049959496
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.corsci.2013.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002865470
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.engfailanal.2009.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044275798
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.engfailanal.2009.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040523417
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.engfailanal.2011.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050867330
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.engfailanal.2011.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011468238
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.engfailanal.2013.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011900717
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.engfailanal.2017.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074226924
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.engfailanal.2017.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085211341
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.engfailanal.2017.06.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086118966
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.engfailanal.2017.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090571510
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.ijpvp.2007.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049723070
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.ijpvp.2008.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000914773
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.ijpvp.2011.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037221251
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.ijpvp.2012.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001897809
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.ijpvp.2016.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049174631
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.ijpvp.2016.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020779181
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.matdes.2011.08.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003992796
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.matdes.2013.03.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020064908
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.ndteint.2011.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044810657
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.oceaneng.2017.06.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090288539
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.petrol.2008.12.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027793916
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.ress.2013.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001144375
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1061/(asce)is.1943-555x.0000063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057637814
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.5006/1.3277545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012243068
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.5006/1.3319138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037892153
    167 rdf:type schema:CreativeWork
    168 https://www.grid.ac/institutes/grid.440473.0 schema:alternateName Badji Mokhtar University
    169 schema:name Badji Mokhtar University, BP 12, 23000, Annaba, Algeria
    170 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...