TOSCA: a Tool for Optimisation in Structural and Civil engineering Analyses View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Corrado Chisari, Claudio Amadio

ABSTRACT

Many structural engineering problems, e.g. parameter identification, optimal design and topology optimisation, involve the use of optimisation algorithms. Genetic algorithms (GA), in particular, have proved to be an effective framework for black-box problems and general enough to be applied to the most disparate problems of engineering practice. In this paper, the code TOSCA, which employs genetic algorithms in the search for the optimum, is described. It has been developed by the authors with the aim of providing a flexible tool for the solution of several optimisation problems arising in structural engineering. The interface has been developed to couple the programme to general solvers using text input/output files and in particular widely used finite element codes. The problem of GA parameter tuning is systematically dealt with by proposing some guidelines based on the role and behaviour of each operator. Two numerical applications are proposed to show how to assess the results and modify GA parameters accordingly, and to demonstrate the flexibility of the integrated approach proposed on a realistic case of seismic retrofitting optimal design. More... »

PAGES

1-19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40091-018-0205-1

DOI

http://dx.doi.org/10.1007/s40091-018-0205-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107888785


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chisari", 
        "givenName": "Corrado", 
        "id": "sg:person.010357743601.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010357743601.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Trieste", 
          "id": "https://www.grid.ac/institutes/grid.5133.4", 
          "name": [
            "Department of Engineering and Architecture, University of Trieste, Piazzale Europa, 1, 34127, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amadio", 
        "givenName": "Claudio", 
        "id": "sg:person.015514263204.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015514263204.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0041-5553(67)90144-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001575542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-011-0732-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004548341", 
          "https://doi.org/10.1007/s00500-011-0732-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesb.2006.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007511906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-25566-3_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007762139", 
          "https://doi.org/10.1007/978-3-642-25566-3_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-013-0996-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010999332", 
          "https://doi.org/10.1007/s00158-013-0996-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-013-0996-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010999332", 
          "https://doi.org/10.1007/s00158-013-0996-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.20348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012188014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-58483-8_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012766166", 
          "https://doi.org/10.1007/3-540-58483-8_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-1153-7_1167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013101024", 
          "https://doi.org/10.1007/978-1-4419-1153-7_1167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-1153-7_1167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013101024", 
          "https://doi.org/10.1007/978-1-4419-1153-7_1167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-08-050684-5.50008-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014728187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2016.11.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016811030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10518-009-9146-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017275637", 
          "https://doi.org/10.1007/s10518-009-9146-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10518-009-9146-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017275637", 
          "https://doi.org/10.1007/s10518-009-9146-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10518-009-9146-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017275637", 
          "https://doi.org/10.1007/s10518-009-9146-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-08-094832-4.50018-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019616593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcom.1997.0463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025804788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-07418-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034057976", 
          "https://doi.org/10.1007/978-3-662-07418-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-07418-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034057976", 
          "https://doi.org/10.1007/978-3-662-07418-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.969927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037339054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015059928466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037495722", 
          "https://doi.org/10.1023/a:1015059928466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eqe.2736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041846401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2015.07.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045414251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.swevo.2011.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048169312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2008.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051642059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-016-1531-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052218956", 
          "https://doi.org/10.1007/s00158-016-1531-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-016-1531-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052218956", 
          "https://doi.org/10.1007/s00158-016-1531-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2013.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052776416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9496(2005)131:1(45)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057606086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)st.1943-541x.0001342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057642984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2.294849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061105302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.585893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061171983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.797972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061172034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.996017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061172126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2010.2083668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmca.2004.824873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061794983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.220.4598.671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062526985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0724076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062853303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/026635108785342064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064577727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/026635108785342064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064577727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3844/ajeassp.2016.669.679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071457756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40747-017-0041-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084521163", 
          "https://doi.org/10.1007/s40747-017-0041-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40747-017-0041-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084521163", 
          "https://doi.org/10.1007/s40747-017-0041-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2008.4631163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093623984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsmc.1999.823277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095321265"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Many structural engineering problems, e.g. parameter identification, optimal design and topology optimisation, involve the use of optimisation algorithms. Genetic algorithms (GA), in particular, have proved to be an effective framework for black-box problems and general enough to be applied to the most disparate problems of engineering practice. In this paper, the code TOSCA, which employs genetic algorithms in the search for the optimum, is described. It has been developed by the authors with the aim of providing a flexible tool for the solution of several optimisation problems arising in structural engineering. The interface has been developed to couple the programme to general solvers using text input/output files and in particular widely used finite element codes. The problem of GA parameter tuning is systematically dealt with by proposing some guidelines based on the role and behaviour of each operator. Two numerical applications are proposed to show how to assess the results and modify GA parameters accordingly, and to demonstrate the flexibility of the integrated approach proposed on a realistic case of seismic retrofitting optimal design.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40091-018-0205-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136478", 
        "issn": [
          "2008-3556", 
          "2008-6695"
        ], 
        "name": "International Journal of Advanced Structural Engineering", 
        "type": "Periodical"
      }
    ], 
    "name": "TOSCA: a Tool for Optimisation in Structural and Civil engineering Analyses", 
    "pagination": "1-19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "297dee84e29570ae9b3f46de009aeb3c0b393d8d9e4482a71eb4fa66186a2476"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40091-018-0205-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107888785"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40091-018-0205-1", 
      "https://app.dimensions.ai/details/publication/pub.1107888785"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000572.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40091-018-0205-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40091-018-0205-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40091-018-0205-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40091-018-0205-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40091-018-0205-1'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      21 PREDICATES      62 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40091-018-0205-1 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N489739ca067742e1bb94d47c327d8afe
4 schema:citation sg:pub.10.1007/3-540-58483-8_7
5 sg:pub.10.1007/978-1-4419-1153-7_1167
6 sg:pub.10.1007/978-3-642-25566-3_11
7 sg:pub.10.1007/978-3-662-07418-3
8 sg:pub.10.1007/s00158-013-0996-4
9 sg:pub.10.1007/s00158-016-1531-1
10 sg:pub.10.1007/s00500-011-0732-1
11 sg:pub.10.1007/s10518-009-9146-1
12 sg:pub.10.1007/s40747-017-0041-0
13 sg:pub.10.1023/a:1015059928466
14 https://doi.org/10.1002/eqe.2736
15 https://doi.org/10.1002/int.20348
16 https://doi.org/10.1006/jcom.1997.0463
17 https://doi.org/10.1016/0041-5553(67)90144-9
18 https://doi.org/10.1016/b978-0-08-050684-5.50008-2
19 https://doi.org/10.1016/b978-0-08-094832-4.50018-0
20 https://doi.org/10.1016/j.compositesb.2006.07.016
21 https://doi.org/10.1016/j.engstruct.2013.12.017
22 https://doi.org/10.1016/j.engstruct.2015.07.043
23 https://doi.org/10.1016/j.engstruct.2016.11.030
24 https://doi.org/10.1016/j.ins.2008.03.012
25 https://doi.org/10.1016/j.swevo.2011.10.001
26 https://doi.org/10.1061/(asce)0733-9496(2005)131:1(45)
27 https://doi.org/10.1061/(asce)st.1943-541x.0001342
28 https://doi.org/10.1109/2.294849
29 https://doi.org/10.1109/4235.585893
30 https://doi.org/10.1109/4235.797972
31 https://doi.org/10.1109/4235.996017
32 https://doi.org/10.1109/cec.2008.4631163
33 https://doi.org/10.1109/icsmc.1999.823277
34 https://doi.org/10.1109/tevc.2010.2083668
35 https://doi.org/10.1109/tsmca.2004.824873
36 https://doi.org/10.1117/12.969927
37 https://doi.org/10.1126/science.220.4598.671
38 https://doi.org/10.1137/0724076
39 https://doi.org/10.1260/026635108785342064
40 https://doi.org/10.3844/ajeassp.2016.669.679
41 schema:datePublished 2018-12
42 schema:datePublishedReg 2018-12-01
43 schema:description Many structural engineering problems, e.g. parameter identification, optimal design and topology optimisation, involve the use of optimisation algorithms. Genetic algorithms (GA), in particular, have proved to be an effective framework for black-box problems and general enough to be applied to the most disparate problems of engineering practice. In this paper, the code TOSCA, which employs genetic algorithms in the search for the optimum, is described. It has been developed by the authors with the aim of providing a flexible tool for the solution of several optimisation problems arising in structural engineering. The interface has been developed to couple the programme to general solvers using text input/output files and in particular widely used finite element codes. The problem of GA parameter tuning is systematically dealt with by proposing some guidelines based on the role and behaviour of each operator. Two numerical applications are proposed to show how to assess the results and modify GA parameters accordingly, and to demonstrate the flexibility of the integrated approach proposed on a realistic case of seismic retrofitting optimal design.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf sg:journal.1136478
48 schema:name TOSCA: a Tool for Optimisation in Structural and Civil engineering Analyses
49 schema:pagination 1-19
50 schema:productId N3537818728964b53a3f45118a74eda2e
51 N42122f56726f4837980c7e80079f0d50
52 N9851cdd14c9a4dafba4063dadb9f5dc1
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107888785
54 https://doi.org/10.1007/s40091-018-0205-1
55 schema:sdDatePublished 2019-04-10T14:19
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N6bbfda9695b34add81321b4b37bebc30
58 schema:url https://link.springer.com/10.1007%2Fs40091-018-0205-1
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N3537818728964b53a3f45118a74eda2e schema:name dimensions_id
63 schema:value pub.1107888785
64 rdf:type schema:PropertyValue
65 N42122f56726f4837980c7e80079f0d50 schema:name doi
66 schema:value 10.1007/s40091-018-0205-1
67 rdf:type schema:PropertyValue
68 N489739ca067742e1bb94d47c327d8afe rdf:first sg:person.010357743601.90
69 rdf:rest Ne363f07d903f42c5a9c02a2d6d815723
70 N6bbfda9695b34add81321b4b37bebc30 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N9851cdd14c9a4dafba4063dadb9f5dc1 schema:name readcube_id
73 schema:value 297dee84e29570ae9b3f46de009aeb3c0b393d8d9e4482a71eb4fa66186a2476
74 rdf:type schema:PropertyValue
75 Ne363f07d903f42c5a9c02a2d6d815723 rdf:first sg:person.015514263204.86
76 rdf:rest rdf:nil
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
81 schema:name Numerical and Computational Mathematics
82 rdf:type schema:DefinedTerm
83 sg:journal.1136478 schema:issn 2008-3556
84 2008-6695
85 schema:name International Journal of Advanced Structural Engineering
86 rdf:type schema:Periodical
87 sg:person.010357743601.90 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
88 schema:familyName Chisari
89 schema:givenName Corrado
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010357743601.90
91 rdf:type schema:Person
92 sg:person.015514263204.86 schema:affiliation https://www.grid.ac/institutes/grid.5133.4
93 schema:familyName Amadio
94 schema:givenName Claudio
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015514263204.86
96 rdf:type schema:Person
97 sg:pub.10.1007/3-540-58483-8_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012766166
98 https://doi.org/10.1007/3-540-58483-8_7
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/978-1-4419-1153-7_1167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013101024
101 https://doi.org/10.1007/978-1-4419-1153-7_1167
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/978-3-642-25566-3_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007762139
104 https://doi.org/10.1007/978-3-642-25566-3_11
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/978-3-662-07418-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034057976
107 https://doi.org/10.1007/978-3-662-07418-3
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s00158-013-0996-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010999332
110 https://doi.org/10.1007/s00158-013-0996-4
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s00158-016-1531-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052218956
113 https://doi.org/10.1007/s00158-016-1531-1
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s00500-011-0732-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004548341
116 https://doi.org/10.1007/s00500-011-0732-1
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s10518-009-9146-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017275637
119 https://doi.org/10.1007/s10518-009-9146-1
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s40747-017-0041-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084521163
122 https://doi.org/10.1007/s40747-017-0041-0
123 rdf:type schema:CreativeWork
124 sg:pub.10.1023/a:1015059928466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037495722
125 https://doi.org/10.1023/a:1015059928466
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/eqe.2736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041846401
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/int.20348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012188014
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1006/jcom.1997.0463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025804788
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0041-5553(67)90144-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001575542
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/b978-0-08-050684-5.50008-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014728187
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/b978-0-08-094832-4.50018-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019616593
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.compositesb.2006.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007511906
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.engstruct.2013.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052776416
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.engstruct.2015.07.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045414251
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.engstruct.2016.11.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016811030
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.ins.2008.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051642059
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.swevo.2011.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048169312
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1061/(asce)0733-9496(2005)131:1(45) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057606086
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1061/(asce)st.1943-541x.0001342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057642984
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/2.294849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061105302
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/4235.585893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171983
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/4235.797972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172034
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/4235.996017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172126
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/cec.2008.4631163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093623984
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/icsmc.1999.823277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095321265
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tevc.2010.2083668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605016
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/tsmca.2004.824873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061794983
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1117/12.969927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037339054
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1126/science.220.4598.671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062526985
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1137/0724076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062853303
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1260/026635108785342064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064577727
178 rdf:type schema:CreativeWork
179 https://doi.org/10.3844/ajeassp.2016.669.679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071457756
180 rdf:type schema:CreativeWork
181 https://www.grid.ac/institutes/grid.5133.4 schema:alternateName University of Trieste
182 schema:name Department of Engineering and Architecture, University of Trieste, Piazzale Europa, 1, 34127, Trieste, Italy
183 rdf:type schema:Organization
184 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
185 schema:name Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...