Gravitational collapse of baryonic and dark matter View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04-01

AUTHORS

Dipanjan Dey, Pankaj S. Joshi

ABSTRACT

A massive star undergoes a continual gravitational collapse when the pressures inside the collapsing star become insufficient to balance the pull of gravity. The Physics of gravitational collapse of stars is well studied. Using general relativistic techniques, one can show that the final fate of such a catastrophic collapse can be a black hole or a naked singularity, depending on the initial conditions of gravitational collapse. While stars are made of baryonic matter whose collapse is well studied, there is good indirect evidence that another type of matter, known as dark matter, plays an important role in the formation of large-scale structures in the universe, such as galaxies. It is estimated that some 85% of the total matter in the universe is dark matter. Since the particle constituent of dark matter is not known yet, the gravitational collapse of dark matter is less explored. Here, we consider first some basic properties of baryonic matter and dark matter collapse. Then, we discuss the final fate of gravitational collapse for different types of matter fields and the nature of the singularity which can be formed as an endstate of gravitational collapse. We then present a general relativistic technique to form equilibrium configurations, and argue that this can be thought of as a general relativistic analog of the standard virialization process. We suggest a modification, where the top-hat collapse model of primordial dark-matter halo formation is modified using the general relativistic technique of equilibrium. We also explain why this type of collapse process is more likely to happen in the dark-matter fields. More... »

PAGES

269-292

References to SciGraph publications

  • 2003-08. Closed Trapped Surfaces in Cosmology in GENERAL RELATIVITY AND GRAVITATION
  • 1938-05. Über eine Klasse von Lösungen der Gravitationsgleichungen der Relativität in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 2012-11-11. Instability of black hole formation under small pressure perturbations in GENERAL RELATIVITY AND GRAVITATION
  • 1984-06. Violation of cosmic censorship in the gravitational collapse of a dust cloud in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1922-12. Über die Krümmung des Raumes in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 2007-07-31. On the genericity of spacetime singularities in PRAMANA
  • 1999-12. The question of cosmic censorship in JOURNAL OF ASTROPHYSICS AND ASTRONOMY
  • 1999-12. On the Curvature of Space in GENERAL RELATIVITY AND GRAVITATION
  • 1999-07. Naked Singularity of the Vaidya-de Sitter Spacetime and Cosmic Censorship Conjecture in GENERAL RELATIVITY AND GRAVITATION
  • 1966-07. Singular hypersurfaces and thin shells in general relativity in THE EUROPEAN PHYSICAL JOURNAL PLUS
  • 1987-03. The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2014-08-13. Can we observationally test the weak cosmic censorship conjecture? in EUROPEAN PHYSICAL JOURNAL C
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40065-019-0252-x

    DOI

    http://dx.doi.org/10.1007/s40065-019-0252-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113175710


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "International Center for Cosmology, Charusat University, 388421, Anand, Gujarat, India", 
              "id": "http://www.grid.ac/institutes/grid.448806.6", 
              "name": [
                "International Center for Cosmology, Charusat University, 388421, Anand, Gujarat, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dey", 
            "givenName": "Dipanjan", 
            "id": "sg:person.011366303233.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011366303233.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Center for Cosmology, Charusat University, 388421, Anand, Gujarat, India", 
              "id": "http://www.grid.ac/institutes/grid.448806.6", 
              "name": [
                "International Center for Cosmology, Charusat University, 388421, Anand, Gujarat, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Joshi", 
            "givenName": "Pankaj S.", 
            "id": "sg:person.01242367451.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242367451.89"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10714-012-1471-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022192410", 
              "https://doi.org/10.1007/s10714-012-1471-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026675313562", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007514430", 
              "https://doi.org/10.1023/a:1026675313562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01374951", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001245219", 
              "https://doi.org/10.1007/bf01374951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01332580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044436352", 
              "https://doi.org/10.1007/bf01332580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01223743", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020288887", 
              "https://doi.org/10.1007/bf01223743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01217684", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035021836", 
              "https://doi.org/10.1007/bf01217684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1024508831299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049815091", 
              "https://doi.org/10.1023/a:1024508831299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02702355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032954381", 
              "https://doi.org/10.1007/bf02702355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-014-2983-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030317129", 
              "https://doi.org/10.1140/epjc/s10052-014-2983-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02710419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036607160", 
              "https://doi.org/10.1007/bf02710419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026751225741", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008318358", 
              "https://doi.org/10.1023/a:1026751225741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12043-007-0114-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008253024", 
              "https://doi.org/10.1007/s12043-007-0114-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04-01", 
        "datePublishedReg": "2019-04-01", 
        "description": "A massive star undergoes a continual gravitational collapse when the pressures inside the collapsing star become insufficient to balance the pull of gravity. The Physics of gravitational collapse of stars is well studied. Using general relativistic techniques, one can show that the final fate of such a catastrophic collapse can be a black hole or a naked singularity, depending on the initial conditions of gravitational collapse. While stars are made of baryonic matter whose collapse is well studied, there is good indirect evidence that another type of matter, known as dark matter, plays an important role in the formation of large-scale structures in the universe, such as galaxies. It is estimated that some 85% of the total matter in the universe is dark matter. Since the particle constituent of dark matter is not known yet, the gravitational collapse of dark matter is less explored. Here, we consider first some basic properties of baryonic matter and dark matter collapse. Then, we discuss the final fate of gravitational collapse for different types of matter fields and the nature of the singularity which can be formed as an endstate of gravitational collapse. We then present a general relativistic technique to form equilibrium configurations, and argue that this can be thought of as a general relativistic analog of the standard virialization process. We suggest a modification, where the top-hat collapse model of primordial dark-matter halo formation is modified using the general relativistic technique of equilibrium. We also explain why this type of collapse process is more likely to happen in the dark-matter fields.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s40065-019-0252-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136844", 
            "issn": [
              "2193-5343", 
              "2193-5351"
            ], 
            "name": "Arabian Journal of Mathematics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "keywords": [
          "dark matter", 
          "gravitational collapse", 
          "relativistic techniques", 
          "baryonic matter", 
          "dark matter field", 
          "dark matter collapse", 
          "general relativistic analog", 
          "continual gravitational collapse", 
          "types of matter", 
          "final fate", 
          "large-scale structure", 
          "massive stars", 
          "matter collapse", 
          "virialization process", 
          "black holes", 
          "total matter", 
          "matter fields", 
          "halo formation", 
          "stars", 
          "collapse model", 
          "relativistic analogue", 
          "best indirect evidence", 
          "naked singularity", 
          "equilibrium configuration", 
          "universe", 
          "particle constituents", 
          "galaxies", 
          "collapse process", 
          "initial conditions", 
          "basic properties", 
          "physics", 
          "matter", 
          "field", 
          "holes", 
          "singularity", 
          "catastrophic collapse", 
          "collapse", 
          "gravity", 
          "technique", 
          "pull of gravity", 
          "formation", 
          "configuration", 
          "properties", 
          "endstate", 
          "equilibrium", 
          "structure", 
          "process", 
          "indirect evidence", 
          "nature", 
          "pressure", 
          "modification", 
          "model", 
          "types", 
          "important role", 
          "different types", 
          "analogues", 
          "conditions", 
          "constituents", 
          "evidence", 
          "pull", 
          "role", 
          "fate"
        ], 
        "name": "Gravitational collapse of baryonic and dark matter", 
        "pagination": "269-292", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113175710"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40065-019-0252-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40065-019-0252-x", 
          "https://app.dimensions.ai/details/publication/pub.1113175710"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_817.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s40065-019-0252-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40065-019-0252-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40065-019-0252-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40065-019-0252-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40065-019-0252-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    175 TRIPLES      22 PREDICATES      99 URIs      79 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40065-019-0252-x schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 schema:author N9da04fb195c24736a2b98c05941a0541
    4 schema:citation sg:pub.10.1007/bf01217684
    5 sg:pub.10.1007/bf01223743
    6 sg:pub.10.1007/bf01332580
    7 sg:pub.10.1007/bf01374951
    8 sg:pub.10.1007/bf02702355
    9 sg:pub.10.1007/bf02710419
    10 sg:pub.10.1007/s10714-012-1471-z
    11 sg:pub.10.1007/s12043-007-0114-5
    12 sg:pub.10.1023/a:1024508831299
    13 sg:pub.10.1023/a:1026675313562
    14 sg:pub.10.1023/a:1026751225741
    15 sg:pub.10.1140/epjc/s10052-014-2983-3
    16 schema:datePublished 2019-04-01
    17 schema:datePublishedReg 2019-04-01
    18 schema:description A massive star undergoes a continual gravitational collapse when the pressures inside the collapsing star become insufficient to balance the pull of gravity. The Physics of gravitational collapse of stars is well studied. Using general relativistic techniques, one can show that the final fate of such a catastrophic collapse can be a black hole or a naked singularity, depending on the initial conditions of gravitational collapse. While stars are made of baryonic matter whose collapse is well studied, there is good indirect evidence that another type of matter, known as dark matter, plays an important role in the formation of large-scale structures in the universe, such as galaxies. It is estimated that some 85% of the total matter in the universe is dark matter. Since the particle constituent of dark matter is not known yet, the gravitational collapse of dark matter is less explored. Here, we consider first some basic properties of baryonic matter and dark matter collapse. Then, we discuss the final fate of gravitational collapse for different types of matter fields and the nature of the singularity which can be formed as an endstate of gravitational collapse. We then present a general relativistic technique to form equilibrium configurations, and argue that this can be thought of as a general relativistic analog of the standard virialization process. We suggest a modification, where the top-hat collapse model of primordial dark-matter halo formation is modified using the general relativistic technique of equilibrium. We also explain why this type of collapse process is more likely to happen in the dark-matter fields.
    19 schema:genre article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree true
    22 schema:isPartOf N09d67bb3c78a431f9a183fca3107b7ca
    23 N6b9d0a3831d24cf7b99eeecfd60e36eb
    24 sg:journal.1136844
    25 schema:keywords analogues
    26 baryonic matter
    27 basic properties
    28 best indirect evidence
    29 black holes
    30 catastrophic collapse
    31 collapse
    32 collapse model
    33 collapse process
    34 conditions
    35 configuration
    36 constituents
    37 continual gravitational collapse
    38 dark matter
    39 dark matter collapse
    40 dark matter field
    41 different types
    42 endstate
    43 equilibrium
    44 equilibrium configuration
    45 evidence
    46 fate
    47 field
    48 final fate
    49 formation
    50 galaxies
    51 general relativistic analog
    52 gravitational collapse
    53 gravity
    54 halo formation
    55 holes
    56 important role
    57 indirect evidence
    58 initial conditions
    59 large-scale structure
    60 massive stars
    61 matter
    62 matter collapse
    63 matter fields
    64 model
    65 modification
    66 naked singularity
    67 nature
    68 particle constituents
    69 physics
    70 pressure
    71 process
    72 properties
    73 pull
    74 pull of gravity
    75 relativistic analogue
    76 relativistic techniques
    77 role
    78 singularity
    79 stars
    80 structure
    81 technique
    82 total matter
    83 types
    84 types of matter
    85 universe
    86 virialization process
    87 schema:name Gravitational collapse of baryonic and dark matter
    88 schema:pagination 269-292
    89 schema:productId N0ecbc075a4a04844ba0564ebcae26d66
    90 N19981f23051c430f8c6b3fc3c1a9972f
    91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113175710
    92 https://doi.org/10.1007/s40065-019-0252-x
    93 schema:sdDatePublished 2022-06-01T22:20
    94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    95 schema:sdPublisher Nc7c318d691d84bb88666d70dbeacde05
    96 schema:url https://doi.org/10.1007/s40065-019-0252-x
    97 sgo:license sg:explorer/license/
    98 sgo:sdDataset articles
    99 rdf:type schema:ScholarlyArticle
    100 N09d67bb3c78a431f9a183fca3107b7ca schema:issueNumber 4
    101 rdf:type schema:PublicationIssue
    102 N0ecbc075a4a04844ba0564ebcae26d66 schema:name dimensions_id
    103 schema:value pub.1113175710
    104 rdf:type schema:PropertyValue
    105 N19981f23051c430f8c6b3fc3c1a9972f schema:name doi
    106 schema:value 10.1007/s40065-019-0252-x
    107 rdf:type schema:PropertyValue
    108 N42130b3468004258826be6ab73ec5ecc rdf:first sg:person.01242367451.89
    109 rdf:rest rdf:nil
    110 N6b9d0a3831d24cf7b99eeecfd60e36eb schema:volumeNumber 8
    111 rdf:type schema:PublicationVolume
    112 N9da04fb195c24736a2b98c05941a0541 rdf:first sg:person.011366303233.52
    113 rdf:rest N42130b3468004258826be6ab73ec5ecc
    114 Nc7c318d691d84bb88666d70dbeacde05 schema:name Springer Nature - SN SciGraph project
    115 rdf:type schema:Organization
    116 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Physical Sciences
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Astronomical and Space Sciences
    121 rdf:type schema:DefinedTerm
    122 sg:journal.1136844 schema:issn 2193-5343
    123 2193-5351
    124 schema:name Arabian Journal of Mathematics
    125 schema:publisher Springer Nature
    126 rdf:type schema:Periodical
    127 sg:person.011366303233.52 schema:affiliation grid-institutes:grid.448806.6
    128 schema:familyName Dey
    129 schema:givenName Dipanjan
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011366303233.52
    131 rdf:type schema:Person
    132 sg:person.01242367451.89 schema:affiliation grid-institutes:grid.448806.6
    133 schema:familyName Joshi
    134 schema:givenName Pankaj S.
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242367451.89
    136 rdf:type schema:Person
    137 sg:pub.10.1007/bf01217684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035021836
    138 https://doi.org/10.1007/bf01217684
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/bf01223743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020288887
    141 https://doi.org/10.1007/bf01223743
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/bf01332580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044436352
    144 https://doi.org/10.1007/bf01332580
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/bf01374951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001245219
    147 https://doi.org/10.1007/bf01374951
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/bf02702355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032954381
    150 https://doi.org/10.1007/bf02702355
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/bf02710419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036607160
    153 https://doi.org/10.1007/bf02710419
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s10714-012-1471-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022192410
    156 https://doi.org/10.1007/s10714-012-1471-z
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s12043-007-0114-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008253024
    159 https://doi.org/10.1007/s12043-007-0114-5
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1023/a:1024508831299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049815091
    162 https://doi.org/10.1023/a:1024508831299
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1023/a:1026675313562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007514430
    165 https://doi.org/10.1023/a:1026675313562
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1023/a:1026751225741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008318358
    168 https://doi.org/10.1023/a:1026751225741
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1140/epjc/s10052-014-2983-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030317129
    171 https://doi.org/10.1140/epjc/s10052-014-2983-3
    172 rdf:type schema:CreativeWork
    173 grid-institutes:grid.448806.6 schema:alternateName International Center for Cosmology, Charusat University, 388421, Anand, Gujarat, India
    174 schema:name International Center for Cosmology, Charusat University, 388421, Anand, Gujarat, India
    175 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...