# Approximating fixed points of λ,ρ-firmly nonexpansive mappings in modular function spaces

Ontology type: schema:ScholarlyArticle      Open Access: True

### Article Info

DATE

2018-03-21

AUTHORS ABSTRACT

In this paper, we first introduce an iterative process in modular function spaces and then extend the idea of a λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document}-firmly nonexpansive mapping from Banach spaces to modular function spaces. We call such mappings as λ,ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \lambda ,\rho \right)$$\end{document}-firmly nonexpansive mappings. We incorporate the two ideas to approximate fixed points of λ,ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \lambda ,\rho \right)$$\end{document} -firmly nonexpansive mappings using the above-mentioned iterative process in modular function spaces. More... »

PAGES

281-287

### Journal

TITLE

Arabian Journal of Mathematics

ISSUE

4

VOLUME

7

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40065-018-0204-x

DOI

http://dx.doi.org/10.1007/s40065-018-0204-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101629972

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Statistics and Physics, Qatar University, 2713, Doha, Qatar",
"id": "http://www.grid.ac/institutes/grid.412603.2",
"name": [
"Department of Mathematics, Statistics and Physics, Qatar University, 2713, Doha, Qatar"
],
"type": "Organization"
},
"familyName": "Khan",
"givenName": "Safeer Hussain",
"id": "sg:person.010266761613.61",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010266761613.61"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1186/1687-1812-2014-34",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026883244",
"https://doi.org/10.1186/1687-1812-2014-34"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11590-015-0954-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029476749",
"https://doi.org/10.1007/s11590-015-0954-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-14051-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026728500",
"https://doi.org/10.1007/978-3-319-14051-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1687-1812-2012-118",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053468569",
"https://doi.org/10.1186/1687-1812-2012-118"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1687-1812-2013-69",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001676343",
"https://doi.org/10.1186/1687-1812-2013-69"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1029-242x-2014-328",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052614340",
"https://doi.org/10.1186/1029-242x-2014-328"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1687-1812-2014-183",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037254103",
"https://doi.org/10.1186/1687-1812-2014-183"
],
"type": "CreativeWork"
}
],
"datePublished": "2018-03-21",
"datePublishedReg": "2018-03-21",
"description": "In this paper, we first introduce an iterative process in modular function spaces and then extend the idea of a \u03bb\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\lambda$$\\end{document}-firmly nonexpansive mapping from Banach spaces to modular function spaces. We call such mappings as \u03bb,\u03c1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\left( \\lambda ,\\rho \\right)$$\\end{document}-firmly nonexpansive mappings. We incorporate the two ideas to approximate fixed points of \u03bb,\u03c1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\left( \\lambda ,\\rho \\right)$$\\end{document} -firmly nonexpansive mappings using the above-mentioned iterative process in modular function spaces.",
"genre": "article",
"id": "sg:pub.10.1007/s40065-018-0204-x",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136844",
"issn": [
"2193-5343",
"2193-5351"
],
"name": "Arabian Journal of Mathematics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"iterative process",
"point",
"mapping",
"process",
"space",
"modular function spaces",
"idea",
"such mappings",
"paper",
"function spaces",
"nonexpansive mappings",
"Banach spaces"
],
"name": "Approximating fixed points of \u03bb,\u03c1-firmly nonexpansive mappings in modular function spaces",
"pagination": "281-287",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1101629972"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s40065-018-0204-x"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s40065-018-0204-x",
"https://app.dimensions.ai/details/publication/pub.1101629972"
],
"sdDataset": "articles",
"sdDatePublished": "2021-11-01T18:34",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_780.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s40065-018-0204-x"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40065-018-0204-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40065-018-0204-x'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40065-018-0204-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40065-018-0204-x'

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      22 PREDICATES      44 URIs      29 LITERALS      6 BLANK NODES

Subject Predicate Object
2 anzsrc-for:0101
3 schema:author N7b803c4423d2432b90dd02acf66505f3
4 schema:citation sg:pub.10.1007/978-3-319-14051-3
5 sg:pub.10.1007/s11590-015-0954-8
6 sg:pub.10.1186/1029-242x-2014-328
7 sg:pub.10.1186/1687-1812-2012-118
8 sg:pub.10.1186/1687-1812-2013-69
9 sg:pub.10.1186/1687-1812-2014-183
10 sg:pub.10.1186/1687-1812-2014-34
11 schema:datePublished 2018-03-21
12 schema:datePublishedReg 2018-03-21
13 schema:description In this paper, we first introduce an iterative process in modular function spaces and then extend the idea of a λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document}-firmly nonexpansive mapping from Banach spaces to modular function spaces. We call such mappings as λ,ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \lambda ,\rho \right)$$\end{document}-firmly nonexpansive mappings. We incorporate the two ideas to approximate fixed points of λ,ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \lambda ,\rho \right)$$\end{document} -firmly nonexpansive mappings using the above-mentioned iterative process in modular function spaces.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N48363181088f41c7b616990652b39765
18 N5c65e40313d3479f802bd8bb44731ceb
19 sg:journal.1136844
20 schema:keywords Banach spaces
21 function spaces
22 idea
23 iterative process
24 mapping
25 modular function spaces
26 nonexpansive mappings
27 paper
28 point
29 process
30 space
31 such mappings
32 schema:name Approximating fixed points of λ,ρ-firmly nonexpansive mappings in modular function spaces
33 schema:pagination 281-287
34 schema:productId N61cdd4e266474685ac3234ee71867bd4
35 N7c137681fc894244a6b5c3f76e9f95aa
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101629972
37 https://doi.org/10.1007/s40065-018-0204-x
38 schema:sdDatePublished 2021-11-01T18:34
40 schema:sdPublisher Naa7cf1c6eb234fa487f191d6ef810c16
41 schema:url https://doi.org/10.1007/s40065-018-0204-x
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N48363181088f41c7b616990652b39765 schema:issueNumber 4
46 rdf:type schema:PublicationIssue
48 rdf:type schema:PublicationVolume
49 N61cdd4e266474685ac3234ee71867bd4 schema:name doi
50 schema:value 10.1007/s40065-018-0204-x
51 rdf:type schema:PropertyValue
52 N7b803c4423d2432b90dd02acf66505f3 rdf:first sg:person.010266761613.61
53 rdf:rest rdf:nil
54 N7c137681fc894244a6b5c3f76e9f95aa schema:name dimensions_id
55 schema:value pub.1101629972
56 rdf:type schema:PropertyValue
57 Naa7cf1c6eb234fa487f191d6ef810c16 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
63 schema:name Pure Mathematics
64 rdf:type schema:DefinedTerm
65 sg:journal.1136844 schema:issn 2193-5343
66 2193-5351
67 schema:name Arabian Journal of Mathematics
68 schema:publisher Springer Nature
69 rdf:type schema:Periodical
70 sg:person.010266761613.61 schema:affiliation grid-institutes:grid.412603.2
71 schema:familyName Khan
72 schema:givenName Safeer Hussain
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010266761613.61
74 rdf:type schema:Person
75 sg:pub.10.1007/978-3-319-14051-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026728500
76 https://doi.org/10.1007/978-3-319-14051-3
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/s11590-015-0954-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029476749
79 https://doi.org/10.1007/s11590-015-0954-8
80 rdf:type schema:CreativeWork
81 sg:pub.10.1186/1029-242x-2014-328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052614340
82 https://doi.org/10.1186/1029-242x-2014-328
83 rdf:type schema:CreativeWork
84 sg:pub.10.1186/1687-1812-2012-118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053468569
85 https://doi.org/10.1186/1687-1812-2012-118
86 rdf:type schema:CreativeWork
87 sg:pub.10.1186/1687-1812-2013-69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001676343
88 https://doi.org/10.1186/1687-1812-2013-69
89 rdf:type schema:CreativeWork
90 sg:pub.10.1186/1687-1812-2014-183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037254103
91 https://doi.org/10.1186/1687-1812-2014-183
92 rdf:type schema:CreativeWork
93 sg:pub.10.1186/1687-1812-2014-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026883244
94 https://doi.org/10.1186/1687-1812-2014-34
95 rdf:type schema:CreativeWork
96 grid-institutes:grid.412603.2 schema:alternateName Department of Mathematics, Statistics and Physics, Qatar University, 2713, Doha, Qatar
97 schema:name Department of Mathematics, Statistics and Physics, Qatar University, 2713, Doha, Qatar
98 rdf:type schema:Organization